如何用R建立多重线性回归模型(上)

本文介绍了如何使用R建立多重线性回归模型,通过mtcars数据集探讨了模型构建过程,包括数据预处理、图像分析、模型拟合、参数评估等步骤,并解释了模型中自变量的影响及意义。
摘要由CSDN通过智能技术生成

在之前的文章中,我介绍了如何用R建立简单线性回归模型。简单线性回归有一个特点,即自变量只有一个。但是实际生活中,往往影响因素有很多,因此有必要学习多重线性回归,即自变量不只有一个的情况。多重线性回归模型的建立和简单线性回归模型一样,分为4步(文章直达链接)

R中内置了很多数据集。其中有一个mtcars 数据集,它比较了不同的车型,每加仑里程(mpg),气缸排量(disp),马力(hp),汽车重量(wt)和一些更多的参数。以下罗列了一部分:

> datasets::mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
.......................................................................
.......................................................................
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

(中间问个小问题,这个数据集是什么格式?另外,如何知道它有几行几列?我能想到两种方法,文末会公布答案。)

数据比较多,只需要mpg,disp,hp,wt列的数据,并将存储到analysis_data变量中,并用head函数只显示前三行数据

> analysis_data <- mtcars[,c("mpg","disp","hp","wt")]
> head(analysis_data,n=3)
               mpg disp  hp    wt
Mazda RX4     21.0  160 110 2.620
Mazda RX4 Wag 21.0  160 110 2.875
Datsun 710    22.8  108  93 2.320

通常,在构建模型之前,我们可以利用图像来查看变量间存怎样的近似关系。以本题为例,我们想知道mpg与单个变量之间是否存在一定的线性关系。调用GGally包中的ggpairs函数可以查看两两变量间的关系图。如下图所示

在这里插入图片描述

从图中可以看出,两两变量之间拟合效果不是很好,所以我们进一步推测mpg可能受disp,hp,wt影响。于是我们构建一个多元线性模型
y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 y= \beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3 y=β0+β1x1+β2x2+β3x3

其中

y y y: mpg

x 1 x_1 x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值