在之前的文章中,我介绍了如何用R建立简单线性回归模型。简单线性回归有一个特点,即自变量只有一个。但是实际生活中,往往影响因素有很多,因此有必要学习多重线性回归,即自变量不只有一个的情况。多重线性回归模型的建立和简单线性回归模型一样,分为4步(文章直达链接)
R中内置了很多数据集。其中有一个mtcars
数据集,它比较了不同的车型,每加仑里程(mpg
),气缸排量(disp
),马力(hp
),汽车重量(wt
)和一些更多的参数。以下罗列了一部分:
> datasets::mtcars
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
.......................................................................
.......................................................................
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
(中间问个小问题,这个数据集是什么格式?另外,如何知道它有几行几列?我能想到两种方法,文末会公布答案。)
数据比较多,只需要mpg,disp,hp,wt列的数据,并将存储到analysis_data变量中,并用head函数只显示前三行数据
> analysis_data <- mtcars[,c("mpg","disp","hp","wt")]
> head(analysis_data,n=3)
mpg disp hp wt
Mazda RX4 21.0 160 110 2.620
Mazda RX4 Wag 21.0 160 110 2.875
Datsun 710 22.8 108 93 2.320
通常,在构建模型之前,我们可以利用图像来查看变量间存怎样的近似关系。以本题为例,我们想知道mpg与单个变量之间是否存在一定的线性关系。调用GGally包中的ggpairs函数可以查看两两变量间的关系图。如下图所示
从图中可以看出,两两变量之间拟合效果不是很好,所以我们进一步推测mpg可能受disp,hp,wt影响。于是我们构建一个多元线性模型
y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 y= \beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3 y=β0+β1x1+β2x2+β3x3
其中
y y y: mpg
x 1 x_1 x1