Ubuntu安装显卡驱动、cuda和cudnn

由于深度学习是一个计算密集型的过程,因此在利用tensorflow或者是pytorch等机器学习的框架的时候,我们通常会采用GPU对计算进行加速,NVIDIA为此提供了cuda和cudnn来帮助我们利用显卡对涉及到的运算进行加速。但是,在Ubuntu 中安装显卡常常出现的一个问题是安装好驱动之后出现循环登录的情况,为了解决上述问题,我把自己的经验总结如下:

问题的出现

通常,我们是直接在Ubuntu的Software&Updates的Additional Drivers中安装NVIDIA的闭源驱动(图1):图1但是安装好之后如果我们重启机器,会发现系统会一直停留登录界面,无论我们输入多少次密码。这就是典型的循环登录问题

可能的原因

这里给出目前网络上流传的三个可能的原因:

  • 驱动的问题(最有可能)
  • .Xauthority文件的问题
  • /tmp权限的问题

可能的解决方法(只针对驱动问题)

根据网上的教程,我总结了一个自己验证了的方法:

卸载原有的驱动

在卸载原来安装的驱动 之前,需要进入文本模式,同时按下Ctrl+Alt+F1(或者是Fn+Ctrl+Alt+F1),这一步很重要!!!
然后登入系统,卸载原有的驱动:

# 关闭图形界面
sudo service lightdm stop
sudo apt-get remove nvidia-*
sudo apt-get autoremove
sudo nvidia-uninstall

重新安装驱动

卸载完成重启后,依旧进入文本模式

sudo service lightdm stop
sudo ./NVIDIA-Linux-x86_64-XXXX.run -no-x-check -no-nouveau-check -no-opengl-files
# 重新启动图形界面
sudo service lightdm restart
  • -no-x-check :不检查x服务(可选)
  • -no-nouveau-check :不检查nouveau(可选)
  • -no-opengl-files:只安装驱动文件,不安装opengl(必选)

安装cuda和cudnn

安装cuda:

sudo sh cuda_XXXX.run

然后将下载好的cudnn解压:

tar -zvxf cudnn_XXX.tgz
# 拷贝到cuda文件夹下
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/

检查是否安装成功:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

如果得到下图输出则表明安装成功了:
图2

参考链接

<think>好的,我需要帮助用户解决在Ubuntu安装NVIDIA显卡驱动CUDACuDNN的问题。首先,我应该回顾用户提供的引用内容,整理出正确的步骤。用户给的引用有四个,分别来自不同的安装教程,我需要综合这些信息,确保步骤准确无误。 首先,安装NVIDIA驱动。引用[1]提到禁用nouveau驱动,这是必要的步骤,因为Ubuntu默认使用这个驱动,会NVIDIA驱动冲突。我需要详细说明如何禁用,包括修改黑名单文件更新initramfs。然后用户需要添加PPA源或者使用官方驱动,但引用里的步骤是直接通过apt安装,可能用户需要先更新软件源。 接下来是安装CUDA。引用[2][4]提到需要去官网下载对应的CUDA版本,但用户可能更倾向于使用网络仓库安装,避免手动下载。不过根据引用[3],安装过程可能比较直接,但要注意版本兼容性。这里可能需要说明两种安装方法:使用deb包或者runfile,但根据引用[2]中的例子,用户可能下载的是runfile,但需要注意驱动安装选项,避免重复安装驱动。 然后是CuDNN安装,引用[2][4]都强调需要对应CUDA版本,并且要登录NVIDIA账号下载。这里需要详细说明下载正确的tar文件,并解压到指定目录,设置权限。同时,用户可能需要验证安装是否成功,例如编译样本代码,如引用[4]提到的Code Samples。 另外,用户的问题可能涉及到版本兼容性,比如CUDACuDNN的版本匹配。需要提醒用户注意官网的对应关系,例如CuDNN v8.9.7对应CUDA 11.x或12.x,如引用[2]所述。此外,安装过程中的常见问题,比如驱动冲突、安装后的验证步骤,都需要涵盖。 最后,生成相关问题需要考虑用户可能的后续疑问,比如如何验证安装是否成功,如何处理安装中的错误,或者如何升级版本等。需要确保问题有针对性,帮助用户深入理解安装过程。 现在整理步骤时,要注意引用标注的正确性,每个步骤末尾添加对应的引用标识。例如禁用nouveau来自引用[1],安装CUDA的步骤参考引用[2][3]等。同时,保持语言简洁,结构清晰,分步骤说明,方便用户跟随操作。</think>以下是在Ubuntu系统上安装NVIDIA显卡驱动CUDAcuDNN的详细步骤,综合了多个已验证的安装方法: ### 一、安装NVIDIA显卡驱动 1. **禁用nouveau驱动** 编辑黑名单文件并更新: ```bash sudo nano /etc/modprobe.d/blacklist-nouveau.conf # 添加以下内容: blacklist nouveau options nouveau modeset=0 ``` 更新后重启: ```bash sudo update-initramfs -u sudo reboot ``` [^1] 2. **安装驱动** - 方法一(推荐):通过官方仓库安装 ```bash sudo apt update sudo ubuntu-drivers autoinstall sudo reboot ``` - 方法二:手动指定版本 ```bash sudo apt install nvidia-driver-535 # 替换为所需版本号 sudo reboot ``` 3. **验证驱动安装** ```bash nvidia-smi # 显示显卡信息即成功 ``` --- ### 二、安装CUDA工具包 1. **下载CUDA** 访问[NVIDIA CUDA官网](https://developer.nvidia.com/cuda-toolkit-archive),选择与驱动兼容的版本(如CUDA 11.8)对应的安装命令[^2]。 2. **安装CUDA** 示例命令(需替换版本号): ```bash wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run sudo sh cuda_11.8.0_520.61.05_linux.run ``` *注:安装时取消勾选Driver选项(若已安装驱动)*[^3] 3. **配置环境变量** 在`~/.bashrc`中添加: ```bash export PATH=/usr/local/cuda-11.8/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH ``` 生效配置: ```bash source ~/.bashrc ``` --- ### 三、安装cuDNN库 1. **下载cuDNN** 登录[NVIDIA开发者网站](https://developer.nvidia.com/cudnn),选择与CUDA版本匹配的cuDNN(如CUDA 11.x对应cuDNN v8.9.7),下载**Local Installer for Linux (Tar)**[^2][^4]。 2. **安装cuDNN** ```bash tar -xzvf cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include/ sudo cp cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 3. **验证安装** 编译cuDNN示例代码(需先安装CUDA Samples): ```bash cp -r /usr/src/cudnn_samples_v8/ $HOME cd $HOME/cudnn_samples_v8/mnistCUDNN make clean && make ./mnistCUDNN # 输出Test passed即成功 ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值