Unity 开项目遇到的一些问题(模型、场景相关)

本文针对Unity中模型在不同场景下的显示问题提供了两种解决方案。一是调整OptimizeMeshData设置以修复Mesh顶点数据丢失问题;二是通过场景烘焙解决加载资源后的显示差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型问题

        1、在编辑器下查看模型没有问题,打包AB包后出现问题(材质、贴图、Shader 均没有问题),大致是Mesh 顶点数据(法线、切线)丢失

        解决办法:在:ProjectSettings->Player->Other Settings->Optimization->Optimize Mesh Data 

改选项默认是开启的

 只要勾选掉应该就OK了(这里只是我遇到的问题)

        2、切换场景加载资源后,资源变暗,或者编辑器变现不一样。在需要把动态加载资源的场景烘培下。

        遇到问题:我的场景是个空场景,默认什么都没有,加载资源后模型变现个编辑器有差异。

        解决把那:在这个场景创建一个灯光,然后烘培,烘培结束后隐藏掉创建的灯光,再次运行就可以了。

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化发之用[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值