很多同学把神经网络看的太过于复杂,但其实可以不这样看,不要一上来就盯住公式和定理,而是先建立一个宏观概念,再去不断填补问题,这样的方式是学习一个新鲜事物最简单易行的。
就我个人观点,其实所谓的神经网络无非就是增加了各参数之间的耦合性,然后利用IO两侧的大数据,去修正这些参数,让它们在耦合之中,模拟出这两侧大数据之间的规律。现在我具体解释一下这句概括:神经网络可以看成是一个盒子,里面由很多个小盒子组成,每个小盒子之间呢,都是存在某种耦合关系的,而这些盒子的数量和关系,就决定了参数的多少与整个系统的阶数,盒子越多,可以存放的决定性因素就越多,而耦合关系越复杂,可以变幻的方式就越多,在数学上看也就是系统的阶数越高。我们学过马克思辩证法的都知道,世间万物之间是必然存在联系的,那么任意两侧的大数据也就存在着某种映射规律,所以,阶数越高,这个规律就可以越复杂,那么,当你直接用这些大数据去修正参数其实就是在通过参数和结构去拟合规律。这是神经网络的优点也是缺点,因为这样找出来的规律它不能变成逻辑,而没有逻辑就意味着你无法理性思考输入I的输出O是什么,你也无法得知这个样本库之外的输入会得到什么输出,因为是大规律,所以神经网络不会因为某个特别点而变化太多,但可以加入事件驱动来解决这个问题。
而对于混沌系统呢,比如说对某个国家未来十年的发展评估,这里面涉及到的因素太多了,无论是某个因素的精度还是因素数量的精度,还是因素之间的耦合程度的精度,都直接影响了未来的评估,哪怕只有无限趋于1和1本身之间这个无穷小量之间的差距,未来也会预测的完全不一样,所以这就是一个混沌系统,而从实际来说,现实中一切系统都是混沌的,这意味着你必须抓住大规律,这就像是神经网络,它对大数据的学习就是模拟大规律,而某几个不正常的数据并不会改变规律的作用,这里的不正常指的是不具有统计规律的数据。所以对混沌系统的控制一定要以大规律为基准,个别的具体问题具体分析!
人工智能其实就是利用类似神经网络这种学习方法去模拟规律的,也就是说,但凡能够满足参数容纳、结构耦合与参数修正这三个要求的方法,都是学习方法,都可以用来构建人工智能,而现在对人工智能的研究,还主要在决策判断上,其实就是各种变形的分类问题,但是对实时性方面的研究并不是很理想,在我看来,一个好的机器人,应该是尽可能的通过机械结构去实现,当然是在重量体积复杂度等要求下的尽可能,而最终必须利用控制器的地方,再使用它来完成,按照这种理念设计的机器人才是我认为的最佳设计。