OpenAI的主要模型及特点、适用场景如下:
GPT系列
- GPT-3
- 特点:包括davinci、curie、ada、babbage等基础模型,可理解和生成自然语言,其中davinci能处理复杂任务,curie性能与效率较平衡,ada适合简单任务,babbage可处理简单直接任务,它们都能处理2049个tokens,训练数据截至2019年10月。
- 适用场景:自然语言处理的基础任务,如文本生成、简单问答等。
- GPT-3.5
- 特点:能理解和生成自然语言与代码,GPT-3.5-turbo是该系列最具性价比的模型,优化了聊天功能,也适用于传统补全任务,有1750亿参数,知识截止日期为2021年9月。
- 适用场景:日常对话、基础的文本生成、简单的代码编写等一般性任务。
- GPT-4
- 特点:在文本生成、对话、推理等方面能力强,参数约1万亿,准确性达90%-95%,知识更新至2023年4月,支持文本和图片输入。
- 适用场景:对准确性、逻辑推理要求较高的场景,如专业文档撰写、复杂问题分析等。
- GPT-4o
- 特点:“o”代表“omni”