SPSS Modeler 逐步回归分析(指南 第九章)

本文深入探讨了回归分析中变量筛选的重要方法——逐步回归法,包括前进法、后退法及综合两者的逐步回归法,通过案例“Diabetes.sav”数据集展示了如何应用逐步回归法建立最优模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在回归分析中,并不是所有自变量都是有效的,或者说都能对因变量有显著的影响,因此,今天,小编和大家一起学习如何在回归分析的过程中对变量进行筛选。

为了更高效地找出最优模型,可以采用逐步回归法。主要分为前进法、后退法以及逐步回归法。
前进法:逐步增加变量的过程。
后退法:逐步减少变量的过程。
逐步回归法:前进法在引入变量后无法再剔除,后退法在剔除变量后无法再被引入。逐步回归对前进法进行了改进,每当回归方程引入新的变量后,都对方程中现有的变量重新检验,当发现有自变量不显著的情况就会将其重新剔除。

案例:数据文件“Diabetes.sav”。

数据展示
在这里插入图片描述

1. 建立回归模型

采用逐步法
在这里插入图片描述

2. 运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值