中问文本提取

-----承接上篇中文文本提取

#coding=utf-8
from sklearn.feature_extraction.text import   TfidfVectorizer
import jieba



def cut_word(v):
    return  " ".join(list(jieba.cut(v)))

#尝试使用tf-idf算法思想进行文本特征提取
def  tf_context():
    data=["忠领他们到朱老明那里站在大柏树坟前说你看看这个地势怎么样我们的人要是从城里过来经过大渡口或是小渡口沿着千里堤"]
    data_new = []
    
    for sent in data:
        data_new.append(cut_word(sent))
    tfv = TfidfVectorizer(stop_words=["的"]);
    
    
    result =  tfv.fit_transform(data_new);
    print(result.toarray())
    print("/n")
    print(tfv.get_feature_names())
    
if  __name__=="__main__":
    tf_context()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值