偏应力张量

文章详细介绍了偏应力张量的概念,它是从实际应力状态中减去球面应力状态的部分,用以描述材料内部的纯剪切应力分布。通过公式(6)表明偏应力张量的对角线元素之和为零,从而证明了它是一个纯剪状态。此外,文章还讨论了偏应力张量的主方向与原应力张量一致,并且给出了不变量的计算,包括它们与偏应力张量主值的关系。
摘要由CSDN通过智能技术生成

【1】偏应力张量

  通常将应力张量分为两个部分,一部分是球应力张量,另一部分是偏应力张量。其中偏应力张量表示为 p δ i j p \delta _{ij} pδij(这里的 δ i j \delta _{ij} δij克罗内克函数)的张量,其中平均应力 p p p
p = 1 3 c k k = 1 3 ( σ x + σ y + σ z ) = 1 3 I 1 (1) p = \frac { 1 } { 3 } c _ { k k } = \frac { 1 } { 3 } ( \sigma _ { x } + \sigma _ { y } + \sigma _ { z } ) = \frac { 1 } { 3 } I _ { 1 } \tag{1} p=31ckk=31(σx+σy+σz)=31I1(1)  显然由式(1)得知, p p p对于坐标轴可能的所有方向都是相同的,所以称作球应力。偏应力张量 s i j s_{ij} sij定义为从实际应力状态中减去球面应力状态。因此,有
s i j = σ i j − p δ i j (2) s _ { i j } = \sigma _ { i j } - p \delta _ { i j }\tag{2} sij=σijpδij(2)  式(2)给出了偏应力张量 s i j s _ { i j } sij所需要的定义,这个张量的分量为
s i j = [ s 11 s 12 s 13 s 21 s 22 s 23 s 31 s 32 s 33 ] = [ ( σ 11 − p ) σ 12 σ 13 σ 21 ( σ 22 − p ) σ 23 σ 31 a 32 ( σ 33 − p ) ] (3) s _ { i j } = \left[ \begin{array} { l l l } { s _ { 11 } } & { s _ { 12 } } & { s _ { 13 } } \\ { s _ { 21 } } & { s _ { 22 } } & { s _ { 23 } } \\ { s _ { 31 } } & { s _ { 32 } } & { s _ { 33 } } \end{array} \right]\tag{3}=\left[ \begin{array} { l l l } { ( \sigma _ { 11 } - p ) } & { \sigma_ { 12 } } & { \sigma _ { 13 } } \\ { \sigma _ { 21 } } & { ( \sigma_ { 22 } - p ) } & { \sigma _ { 23 } } \\ { \sigma _ { 31 } } & { a _ { 32 } } & { ( \sigma _ { 33 } - p ) } \end{array} \right] sij= s11s21s31s12s22s32s13s23s33 = (σ11p)σ21σ31σ12(σ22p)a32σ13σ23(σ33p) (3)   注意,在式(2)中,对于 i ≠ j i \neq j i=j,有 δ i j = 0 \delta _ { i j }=0 δij=0 s i j = σ i j s_{ij}= \sigma _{ij} sij=σij.

【1.1】偏应力张量是一个纯剪状态

   从式(2)可得,
σ i i = s i i + p δ i i (4) \sigma _{ii}=s_{ii}+p \delta _{ii}\tag{4} σii=sii+pδii(4)
   代换 δ i j \delta _ { i j } δij并用式(1),可以从式(4)中得到
σ i i = s i i + 1 3 σ i i (5) \sigma _{ii}=s_{ii}+ \frac{1}{3}\sigma _{ii}\tag{5} σii=sii+31σii(5) s i i = s 11 + s 22 + s 33 = 0 (6) s_{ii}=s_{11}+s_{22}+s_{33}=0\tag{6} sii=s11+s22+s33=0(6)
固偏应力张量是一个纯剪状态。

【1.2】 s i j s_{ij} sij的主方向

显然,在所有方向上减去一个常数正应力不会改变其主方向,所以偏应力张量与原应力张量的方向是一致的。用主应力表示,偏应力张量为
s i j = [ σ 1 − p 0 0 0 σ 2 − p 0 0 0 0 σ 3 − p ] (7) s _ { i j } = \left[ \begin{array} { l l l } {\sigma _ { 1 } - p } & { 0 } & { 0 } \\ { 0 } & {\sigma _ { 2 } - p } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \sigma_ { 3 } - p } \end{array} \right]\tag{7} sij= σ1p000σ2p0000σ3p (7)为了获得偏应力张量s的不变量,采用推导式(2.45)的类似方法,从而可以写出
∣ s i j − s δ i j ∣ = 0 (8) |s_{ij}-s \delta _{ij}|=0\tag{8} sijsδij=0(8) s 3 − J 1 s 2 + J 2 s − J 3 = 0 (9) s^{3}-J_{1}s^{2}+J_{2}s-J_{3}=0\tag{9} s3J1s2+J2sJ3=0(9)其中, J 1 {J_1} J1 J 2 {J_2} J2 J 3 {J_3} J3为偏应力张量的不变量。不变量 J 1 {J_1} J1 J 2 {J_2} J2 J 3 {J_3} J3可以表达成以 s {s} s的分量或主值 s 1 {s_1} s1 s 2 {s_2} s2 s 3 {s_3} s3表示的不同形式,或者以应力张量的分量或主值 σ 1 {\sigma_1} σ1 σ 2 {\sigma_2} σ2 σ 3 {\sigma_3} σ3表示的不同形式。所以有
J 1 = s i i = s 11 + s 22 + s 33 = s 1 + s 2 + s 3 = 0 J_{1}=s_{ii}=s_{11}+s_{22}+s_{33}=s_{1}+s_{2}+s_{3}=0 J1=sii=s11+s22+s33=s1+s2+s3=0 J 2 = 1 2 S i j S j i = 1 2 ( S 11 2 + S 22 2 + S 33 2 + S 12 s 21 + S 21 s 12 + ⋯   ) = 1 2 ( s 1 2 + s 2 2 + s 3 2 ) J _ { 2 } = \frac { 1 } { 2 } S _ { i j } S _ { j i } = \frac { 1 } { 2 } ( S _ { 1 1 } ^ { 2 } + S _ { 2 2 } ^ { 2 } + S _ { 3 3 } ^ { 2 } + S _ { 1 2 } s _ { 2 1 } + S _ { 2 1 } s _ { 1 2 } + \cdots )= \frac{1}{2}(s_{1}^{2}+s_{2}^{2}+s_{3}^{2}) J2=21SijSji=21(S112+S222+S332+S12s21+S21s12+)=21(s12+s22+s32) J 3 = 1 3 s i j s j k s k i = 1 3 ( s 1 3 + s 2 3 + s 3 3 ) = s 1 s 2 s 3 J_{3}= \frac{1}{3}s_{ij}s_{jk}s_{ki}= \frac{1}{3}(s_{1}^{3}+s_{2}^{3}+s_{3}^{3})=s_{1}s_{2}s_{3} J3=31sijsjkski=31(s13+s23+s33)=s1s2s3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值