本文使用 Zhihu On VSCode 创作并发布
要从物理学的角度说清楚张量是怎么来的,一切都要从相对论开始说起。
狭义相对论其实只是在阐明一件事情:任何4-矢量:
所以有的时候,4-矢量又被成为逆变矢量(contravariant-vector)。
物理量的相对性不仅仅是存在与相对论理论中,在经典力学里,取代洛伦兹变换的低速近似就是简单的速度矢量和,
那么“4-速度是相对于参考系而言”的这个“公理”就简化成了物体的3-速度
其实这也非常好理解。相对性是所有惯性系平权的必然结果——正是因为我们谈论的是同一个物体的速度,当我们和他的相对速度改变的时候,我们测量的速度就会不同,即“协变”。但又因为所有惯性系平权,我们不能去说哪个速度是正确的速度,或者说,所有的参考系下测量的速度都是正确的速度。这种因为分量改变所以所指的物理量在坐标变化下不变的思想,大概是张量这个概念最不容易理解也是最核心的地方。
物理学中干脆就使用这样协变的特性去定义张量,
物理学中张量的定义:一个物理量被称为
形张量,如果在坐标变换
下满足:
![]()
这就是一开始洛伦兹变换
对于张量在物理学的意义至此其实就讨论完毕了,如果对于大量的数学不敢兴趣的物理学习者看到这里为止也是完全可以的。但是这样的定义即不优雅,也没有体现出张量的本质。根据之前的讨论,我们讨论的这个张量本身(而不是他的分量)在坐标变换下是不变的,那么张量应该是一个可以脱离于坐标系可以而独自存在的东西。如果我们能够脱离于坐标系的束缚去定义张量,我们就不需要考虑协变性,定义也会更加的整洁。
想要深究下去其中的原因就要引入流形的一些概念。我们考虑一维物体的运动,我们通常描述这样的物体运动会用到
于是我们只好说,
这样的定义其实非常符合我们的直觉,所谓坐标系,不过是给流形上的元素们起的一个又一个“名字”,我们想要脱离坐标系定义物体在流形上的轨迹,只要不去使用这些外号而直接将
现在我们就可以讨论速度不依赖于坐标系的定义了。根据定义,
由此以来,我们就抓住了矢量这样物理量脱离于坐标系的本质——从切空间到切空间的线性变换,这样的变换同样是元素到元素的变换,不依赖于任何“外号”,但当两边的切空间都选取了坐标刻度的时候,比如1
这就是我们想要寻找的简洁的定义,于是推而广之,数学中定义任何张量都是若干矢量空间之间的映射:
数学中张量的定义:一个型张量是一个多重线性映射:
![]()
其中是一个有限维的矢量空间,在定义中重复
次,
是
的对偶矢量空间 :
,重复
次。
而当我们在和
中选定了坐标基底
和
之后,我们就可以得到一组分量
![]()
并且这些分量满足我们之前物理学的定义。两种定义是等价的,不过不同于物理学把分量们称为张量,数学把诱导出这些分量的映射本身定义为张量。
我们考虑一个
我们现在可以解释为什么会有矢量之上的更高维的物理张量出现的核心原因。回顾一下线性代数,我们很自然的想到对
总结下来,当一个物理量诱导的向量到向量的线性映射是各向异性的,那么他就不是平凡的一个标量,而是一个矩阵。最简单的例子是转动惯量。考虑一个椭圆体,转动惯量在不同的转动主轴上不同,这就是在说
对于更高维的张量,在
首先感谢你能看到这里!
对于有余力的读者可以思考一下这样的问题:
当平凡的时候(本征值相等),
是单位矩阵的倍数,其作用完全可以被一个标量替代。那么我们是否说明在某些特殊情况可以将
张量和标量认同呢。传统的线质量是标量还是
张量?
是否有更多的张量可以被认同?我们提到速度是一维切空间到3维切空间的映射,为什么速度不是
张量?
为什么角速度、角动量这样的矢量和线速度、加速度这样的矢量有很多不同的性质?
想要回答这样的问题(体元,形式场等等)需要系统的学习微分几何 。不用太纠结于答案。如果刚刚接触的话感受到身边的物理量远没有你想得那么简单即可:)
P.S. 欢迎大家在评论区踊跃讨论和反馈本文的效果=w=
P.S.2. 由于本文选题的特殊性,写作中广泛参考和采纳了很多人的回答和观点,具体列表参见参考文献,作者在此对他们表达感谢。[1][2][3][4][5]
参考
- ^什么是张量,包遵信的回答 https://www.zhihu.com/question/20695804/answer/76486670
- ^什么是张量,andrew shen 的回答 https://www.zhihu.com/question/20695804/answer/43265860
- ^《微分几何与广义相对论入门》,梁灿彬
- ^《力学》梁昆淼
- ^Tensor, Wikipedia https://en.wikipedia.org/wiki/Tensor#Definition