应力偏张量的物理意义_物理学中张量的由来

本文从狭义相对论出发,探讨了张量在物理学中的起源和意义。通过介绍4-矢量的概念,阐述了相对性和协变性的原理。进一步,文章引入流形的概念,以摆脱坐标系的束缚,简洁定义张量为矢量空间之间的线性映射。最终,文章解释了张量在描述物理量如转动惯量时的必要性,并指出各向异性导致的非平凡矩阵形式。
摘要由CSDN通过智能技术生成
本文使用 Zhihu On VSCode 创作并发布

要从物理学的角度说清楚张量是怎么来的,一切都要从相对论开始说起。

狭义相对论其实只是在阐明一件事情:任何4-矢量:

(比如4-速度、4-动量、4-加速度、4-电流密度),都是相对于某一个参考系而言的。并且随着参考系的变化,其分量满足洛伦兹变换。

所以有的时候,4-矢量又被成为逆变矢量(contravariant-vector)。

物理量的相对性不仅仅是存在与相对论理论中,在经典力学里,取代洛伦兹变换的低速近似就是简单的速度矢量和,

那么“4-速度是相对于参考系而言”的这个“公理”就简化成了物体的3-速度

是相对于不同惯性系而不同的。这也是我们日常生活中可以遇到的火车惯性系和地面惯性系看同一个物体的速度不同的熟悉的情况。细看上式就是速度可加性,进而衍生出了加速度的可加性(力的分解),以及非惯性系的一系列对于惯性力的分析等等。这样捋下来,相对的思想从高速到低速其实作用在了物理学的全部分支。

其实这也非常好理解。相对性是所有惯性系平权的必然结果——正是因为我们谈论的是同一个物体的速度,当我们和他的相对速度改变的时候,我们测量的速度就会不同,即“协变”。但又因为所有惯性系平权,我们不能去说哪个速度是正确的速度,或者说,所有的参考系下测量的速度都是正确的速度。这种因为分量改变所以所指的物理量在坐标变化下不变的思想,大概是张量这个概念最不容易理解也是最核心的地方。

物理学中干脆就使用这样协变的特性去定义张量,

物理学中张量的定义:一个物理量
被称为
形张量,如果在坐标变换
下满足:

这就是一开始洛伦兹变换

的推广。这也就是那句“Tensor is something that transforms like a tensor”的由来。而这么定义的原因现在也清楚了,
分量的协变恰恰是因为所指的物理量不变。我们熟悉的矢量
,标量
,都是广义的张量的一种特殊情况。

对于张量在物理学的意义至此其实就讨论完毕了,如果对于大量的数学不敢兴趣的物理学习者看到这里为止也是完全可以的。但是这样的定义即不优雅,也没有体现出张量的本质。根据之前的讨论,我们讨论的这个张量本身(而不是他的分量)在坐标变换下是不变的,那么张量应该是一个可以脱离于坐标系可以而独自存在的东西。如果我们能够脱离于坐标系的束缚去定义张量,我们就不需要考虑协变性,定义也会更加的整洁。

想要深究下去其中的原因就要引入流形的一些概念。我们考虑一维物体的运动,我们通常描述这样的物体运动会用到

这样的函数,可是这样的函数值同样是依赖于坐标系的刻度的。于是当没有任何参考系的时候,我们只好更抽象的来描述
。不选取坐标系的“空间”(数学上称为流形)上,每一个点不由什么具体的数来表示,他们唯一的特点就是他们都是流形中的元素。

于是我们只好说,

指的是这个物体经过的那些流形上的元素。并且根据
的定义,对于定义域范围内的每一个自变量取值
,都有一个与之对应的流形上的点
,于是我们很自然的定义
是一个从一维实数轴
到一个一维流形
的一个映射
,这就是
的不依赖于坐标系的定义,对于多维流形s的定义是一样的,只不过可以映射到的元素变得更多了。

这样的定义其实非常符合我们的直觉,所谓坐标系,不过是给流形上的元素们起的一个又一个“名字”,我们想要脱离坐标系定义物体在流形上的轨迹,只要不去使用这些外号而直接将

的结果映射到元素本身,就可以脱离坐标系来定义运动轨迹。

现在我们就可以讨论速度不依赖于坐标系的定义了。根据定义,

,我们现在说s是一个从
到流形的映射,那么
回答的就是,在实数轴上两个很近的点被映射到了流形上了之后它们的距离发生了怎样的改变。 这就是说,
是一个从
的切空间到
的切空间的一个线性变换。

由此以来,我们就抓住了矢量这样物理量脱离于坐标系的本质——从切空间到切空间的线性变换,这样的变换同样是元素到元素的变换,不依赖于任何“外号”,但当两边的切空间都选取了坐标刻度的时候,比如1

之隔的两个元素映射之后相隔20
这个操作就可以具体的用这些外号来描述,比如

这就是我们想要寻找的简洁的定义,于是推而广之,数学中定义任何张量都是若干矢量空间之间的映射:

数学中张量的定义:一个
型张量是一个多重线性映射:

其中
是一个有限维的矢量空间,在定义中重复
次,
的对偶矢量空间 :
,重复
次。

而当我们在
中选定了坐标基底
之后,我们就可以得到一组分量

并且这些分量满足我们之前物理学的定义。两种定义是等价的,不过不同于物理学把分量们称为张量,数学把诱导出这些分量的映射本身定义为张量。

我们考虑一个

张量,
,它有两个输入,一个要给它对偶矢量,一个要给它矢量,他就会吐出来一个实数。当我们只给他一个矢量的时候,
正是矢量空间的定义。这就是说这个张量还可以写成
,是一个一般的矢量空间的线性变换。所以当给定变换前后的坐标基底,
就可以用一个
的矩阵表达。随着坐标基底的改变,
跟据(1,1)张量的定义矩阵的分量会变成
, 即相似变换!我们知道相似变换下的矩阵是同一个线性变换在不同坐标基底的表达,这和张量的定义思想是很相似的,这不是什么巧合,原来这样的矩阵本身就是一种特殊的张量(的分量,取决于你选择的是物理还是数学的定义)。

我们现在可以解释为什么会有矢量之上的更高维的物理张量出现的核心原因。回顾一下线性代数,我们很自然的想到对

进行对角化
。可以发现,
不是单位矩阵的倍数当且仅当对角线上的元素
不全部相同。在
诱导的坐标变换下,
的坐标基底即为
的本征基矢
,并且
对角线上的元素为
的本征值
。他们满足
这个线性变换作用在本征矢上就是简单的在平行于该矢量的方向上的拉伸。那么总结下来,
这个线性映射不是平凡的当且仅当
对任意两个不同方向的本征矢量的拉伸程度不同。这就是说,
是各向异性的映射。

总结下来,当一个物理量诱导的向量到向量的线性映射是各向异性的,那么他就不是平凡的一个标量,而是一个矩阵。最简单的例子是转动惯量。考虑一个椭圆体,转动惯量在不同的转动主轴上不同,这就是在说

的对角线上的元素互不相同,
自然是各向异性的。所以
是一个矩阵而不是标量。而我们也可以推断出一个各项同性的物体他的转动惯量应该可以用一个简单的标量表示(球体)。

对于更高维的张量,在

中没有相对应的物理量,简单来说因为流形只有
维。但是更高维的张量是同样如上被准确的定义了的并广泛的运用在广义相对论等领域中。
首先感谢你能看到这里!
对于有余力的读者可以思考一下这样的问题:
平凡的时候(本征值相等),
是单位矩阵的倍数,其作用完全可以被一个标量替代。那么我们是否说明在某些特殊情况可以将
张量和标量认同呢。传统的线质量是标量还是
张量?

是否有更多的
张量可以被认同?我们提到速度是一维切空间到3维切空间的映射,为什么速度不是
张量?

为什么角速度、角动量这样的矢量和线速度、加速度这样的矢量有很多不同的性质?
想要回答这样的问题(体元,形式场等等)需要系统的学习微分几何 。不用太纠结于答案。如果刚刚接触的话感受到身边的物理量远没有你想得那么简单即可:)

P.S. 欢迎大家在评论区踊跃讨论和反馈本文的效果=w=
P.S.2. 由于本文选题的特殊性,写作中广泛参考和采纳了很多人的回答和观点,具体列表参见参考文献,作者在此对他们表达感谢。[1][2][3][4][5]

参考

  1. ^什么是张量,包遵信的回答 https://www.zhihu.com/question/20695804/answer/76486670
  2. ^什么是张量,andrew shen 的回答 https://www.zhihu.com/question/20695804/answer/43265860
  3. ^《微分几何与广义相对论入门》,梁灿彬
  4. ^《力学》梁昆淼
  5. ^Tensor, Wikipedia https://en.wikipedia.org/wiki/Tensor#Definition
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值