通俗地说,张量在数学上理解为多重线性函数,在物理上可以理解为在不同坐标系(参考系)下有不同表示的量。
先来说一下一些基本概念,与代数学有关:
对偶空间:设
![]()
是
![]()
维向量空间,命
![]()
。则
![]()
也是一个
![]()
维线性空间,将其称为空间
![]()
的
对偶空间。
也就是说,对于线性变换
![]()
来讲,若
![]()
,那么
![]()
,向量空间的对偶空间也就是算子的空间。
求和约定:
![]()
代表
![]()
,即上下同时出现一个指标表示对其求和。
对于向量来讲,有线性变换
![]()
也就是
![]()
或者
![]()
(后文讨论区别)。
双线性型:双重线性函数
![]()
对
![]()
和
![]()
都保持线性,即:
其中
![]()
是向量,
![]()
是实数。多重线性函数以此类推。
张量积:最简单的想法是
![]()
,即
![]()
的结果是一个分块矩阵
![]()
。
下面进入正题。
实际上,双线性型定义出了一种积,这种积是对参与运算的元素分别进行线性变换,使得它们成为同一个向量后,再进行运算。就拿二元情况来说,有
![]()
,则 有:
对于二次型来讲:
![]()
其中
我们把中间起作用的矩阵叫做张量,它的基底是
![]()
,它是一个
![]()
阶方阵。并且我们把
![]()
看作一个一维张量(向量)的话,就把
![]()
称为
反变张量,把
![]()
称作
协变张量。n阶张量实际上可以找出
![]()
个反变基,
![]()
个协变基,于是把这个张量称作
![]()
阶反变
![]()
阶协变的张量(或者
![]()
权逆变
![]()
权协变
![]()
秩张量)。
所谓协变是指与变换
![]()
一致。
反变(逆变)是指与变换
![]()
一致。
如果是学习过场论的同学,就会知道双线性型最中间的
![]()
其实就是
度规张量。
比方说对于欧几里得空间,有度规
![]()
,意思是:
如果在这个空间中有一个
![]()
,那么
![]()
有长度的平方:
![]()
。
所以物理上,度规张量意味着如何测量空间中的“距离”。
张量的运算遵循着:
![]()
,其中
![]()
都是矩阵元素符号。
而张量的缩并运算是指对张量
![]()
进行以下运算:令
![]()
,有
![]()
。三元情况为
![]()
。所以对
![]()
秩张量来说,进行缩并运算会得到一个
![]()
秩的张量。而对于
![]()
阶张量来说,缩并就是求迹(trace),得到的是各个特征值的和,所以缩并的物理意义在于:得到坐标系变换下的不变量。
例如:
其中
![]()
代表对某张量进行缩并运算,实际上就是将参与张量积的两个向量分别转置后求积。