应力偏张量的物理意义_张量初步

本文介绍了张量的基本概念,包括对偶空间、双线性型和张量积。张量在物理中扮演着重要的角色,如度规张量用于衡量空间中的距离。应力偏张量的物理意义与线性变换、双线性型的性质密切相关,它涉及到几何和物理量在不同坐标系下的不变性。
摘要由CSDN通过智能技术生成

29e6eed4f90cc06eae0a1b1593b690b9.png

通俗地说,张量在数学上理解为多重线性函数,在物理上可以理解为在不同坐标系(参考系)下有不同表示的量。

先来说一下一些基本概念,与代数学有关:

对偶空间:设

维向量空间,命
。则
也是一个
维线性空间,将其称为空间
对偶空间

也就是说,对于线性变换

来讲,若
,那么
,向量空间的对偶空间也就是算子的空间。

求和约定
代表
,即上下同时出现一个指标表示对其求和。

对于向量来讲,有线性变换

也就是
或者
(后文讨论区别)。

双线性型:双重线性函数

都保持线性,即:

其中

是向量,
是实数。多重线性函数以此类推。

张量积:最简单的想法是

,即
的结果是一个分块矩阵

下面进入正题。

实际上,双线性型定义出了一种积,这种积是对参与运算的元素分别进行线性变换,使得它们成为同一个向量后,再进行运算。就拿二元情况来说,有

,则 有:

对于二次型来讲:

其中

我们把中间起作用的矩阵叫做张量,它的基底是

,它是一个
阶方阵。并且我们把
看作一个一维张量(向量)的话,就把
称为
反变张量,把
称作
协变张量。n阶张量实际上可以找出
个反变基,
个协变基,于是把这个张量称作
阶反变
阶协变的张量(或者
权逆变
权协变
秩张量)。

所谓协变是指与变换

一致。

反变(逆变)是指与变换

一致。

如果是学习过场论的同学,就会知道双线性型最中间的

其实就是
度规张量

比方说对于欧几里得空间,有度规

,意思是:

如果在这个空间中有一个

,那么
有长度的平方:

所以物理上,度规张量意味着如何测量空间中的“距离”。

张量的运算遵循着:

,其中
都是矩阵元素符号。

张量的缩并运算是指对张量

进行以下运算:令
,有
。三元情况为
。所以对
秩张量来说,进行缩并运算会得到一个
秩的张量。而对于
阶张量来说,缩并就是求迹(trace),得到的是各个特征值的和,所以缩并的物理意义在于:得到坐标系变换下的不变量。

例如:

其中

代表对某张量进行缩并运算,实际上就是将参与张量积的两个向量分别转置后求积。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值