Filtration in Probability Theory (非降sigma-代数族)

在学鞅的时候遇到了鞅的定义:

\left \{ X_{n}, n\geqslant 0 \right \}为概率空间\left ( \Omega, \mathfrak{F}, P \right )上的随机过程,给定随机过程\left \{ Y_{n}, n\geqslant 0 \right \}如果

  • X\left \{ \mathfrak{F}_{t} \right \}_{t\in T}的;
  • E\left ( \left | X_{n} \right | \right )< \infty
  • E\left ( X_{n+1}\mid Y_{0}, Y_{1}, \cdot \cdot \cdot, Y_{n}\right )=X_{n}

则称\left \{ X_{n}, n\geqslant 0 \right \}关于\left \{ Y_{n}, n\geqslant 0 \right \}是鞅。

很不明白第一个条件是怎么回事,书上解释的意义是X_{n}\left \{ Y_{0}, Y_{1}, \cdot \cdot \cdot ,Y_{n}\right \}的函数,解释得很笼统,所以仔细查了查这个\left \{ \mathfrak{F}_{t} \right \}_{t\in T},有这么几个称呼:流域、滤波、非降的\sigma-代数族、随时间演化的信息流,觉得随时间演化的信息流更贴切一些,下面是我结合查阅的资料的理解:


示例1

假设投掷一个色子,出现六个面的概率相同,则结果会是“1或2或3或4或5或6“,使用集合表示为\Omega =\left \{ 1,2,3,4,5,6 \right \}。在0时刻(掷色子前),会问一个问题:”会出现哪一面“,此时我们是不知道什么将要发生,所以这个时候的信息流很简单,要么没投掷要么投掷了并出现六个数字之一,所以此时的信息是\Omega或者\phi,也就是0时刻系统给到的信息是\mathfrak{F}_{0}=\left \{ \Omega ,\phi \right \},可以看出这是一个\sigma-代数;

第一次投掷了色子之后得到一个结果\omega _{1}\in \Omega,这时候会有很多的问题:”出现的一面是1吗“,”是奇数吗“,”比3大吗“等等,满足这些问题的回答分别是\left \{ 1 \right \}\left \{ 1,3,5 \right \}\left \{ 4,5,6 \right \}等等,所以所有的问题的答案都会出现在\Omega的幂集\mathbb{P}\left ( \Omega \right )中,可以将信息流理解为某时刻过后包含所有问题答案的集合,也就是\mathfrak{F}_{1}=\mathbb{P}\left ( \Omega \right )。显然\mathfrak{F}_{0}\subseteq \mathfrak{F}_{1}

假设按照顺序投掷两次色子,在投掷之前,我们是不知道结果的,最后的结果会出现在\Omega _{2}=\Omega \times \Omega中,所以此时的信息流为\mathfrak{F}_{0}=\left \{\Omega _{2} ,\phi \right \}

在一次投掷之后,能回答的问题有哪些呢?只有关于第一次投掷的问题,关于第二次抛掷的问题是得不到答案的,所以此时的信息流\mathfrak{F}_{1}=\mathbb{P}\left ( \Omega \right )\times \Omega

两次投掷之后,就会有所有的信息了,信息流就是\mathfrak{F}_{2}=\mathbb{P}\left ( \Omega _{2} \right )。显然\mathfrak{F}_{0}\subseteq \mathfrak{F}_{1}\subseteq \mathfrak{F}_{2}

举例:

\left \{ \left ( 1,5 \right ) \right \}\in \mathfrak{F}_{2}表示第一次投掷结果为1,第二次投掷结果为5;

\left \{ \left ( 1,5 \right ),\left ( 5,1 \right ) \right \}\in \mathfrak{F}_{2}表示在两次投掷中一次为1,一次为5;

\left \{ \left ( 1,3,5 \right ) \times \left ( 2,4,6 \right ) \right \}\in \mathfrak{F}_{2}表示一次投掷为奇数,第二次投掷为偶数。

也就是说,\mathfrak{F}_{2}可以回答两次色子投掷之后关于投掷的所有问题!

总结:\left \{ \mathfrak{F}_{t} \right \}_{t\in T}表示随时间演化的信息流(flow of information up to time t),随机变量随着时间的增加不断地产生更多的信息。


示例2

举一个更简单的例子,随机过程X在0时刻的值为0,在1时刻取值为ab,2时刻的取值为cd(1时刻取值为a的情况下)、ef(1时刻取值为b的情况下)。也就是随机过程X会有四条取值路径:\omega _{1}=0\rightarrow a\rightarrow c\omega _{2}=0\rightarrow a\rightarrow d\omega _{3}=0\rightarrow b\rightarrow e\omega _{4}=0\rightarrow b\rightarrow f。路径空间为\Omega =\left \{ \omega _{1},\omega _{2},\omega _{3},\omega _{4} \right \},我们可以得到信息流如下:

\mathfrak{F}_{0}=\left \{ \phi ,\Omega \right \}

\mathfrak{F}_{1}=\left \{ \phi ,\left \{ \omega _{1},\omega _{2} \right \}, \left \{ \omega _{3},\omega _{4} \right \}, \Omega \right \}

\mathfrak{F}_{2}=\mathbb{P}\left ( \Omega \right )

举例:

\left \{ \omega _{1},\omega _{3},\omega _{4} \right \}\in \mathfrak{F}_{2}表示“没有走路径2”的信息

\left \{ \omega _{1},\omega _{2} \right \}\in \mathfrak{F}_{2}表示“1时刻走了a的路径”的信息,这个信息同样也出现在了\mathfrak{F}_{1}中。

Filtration就是在某一时刻的所有的信息的反映。在0时刻,不知道随机变量会朝着哪一条路径发展,所以所拥有的信息就只有空集和全集;在1时刻可以取值ab,确定了随机变量的发展方向,拥有的信息量更多;在2时刻就可以知道关于路径的所有的事情。可以看到\mathfrak{F}_{0}\subseteq \mathfrak{F}_{1}\subseteq \mathfrak{F}_{2}


示例3

题目:投掷一枚硬币,正反面分别用HT表示,投掷一枚硬币得到正反面的概率相同,每一时刻投掷一次,求0、1、2、3时刻的信息流。

最后可取的值有\omega _{1}=H\rightarrow H\rightarrow H\omega _{2}=H\rightarrow H\rightarrow T\omega _{3}=H\rightarrow T\rightarrow H\omega _{4}=H\rightarrow T\rightarrow T\omega _{5}=T\rightarrow H\rightarrow H\omega _{6}=T\rightarrow H\rightarrow T\omega _{7}=T\rightarrow T\rightarrow H\omega _{8}=T\rightarrow T\rightarrow T,取值空间为\Omega =\left \{ \omega _{1}, \omega _{2}, \omega _{3}, \omega _{4}, \omega _{5}, \omega _{6}, \omega _{7}, \omega _{8} \right \}

则信息流为:

\mathfrak{F}_{0}=\left \{ \phi ,\Omega \right \}

\mathfrak{F}_{1}=\left \{ \phi ,\left \{ \omega _{1},\omega _{2},\omega _{3},\omega _{4} \right \}, \left \{ \omega _{5},\omega _{6},\omega _{7},\omega _{8} \right \}, \Omega \right \}

\mathfrak{F}_{2}=\left \{ \phi , \left \{\omega _{1},\omega _{2} \right \}, \left \{\omega _{3},\omega _{4} \right \}, \left \{\omega _{5},\omega _{6} \right \}, \left \{\omega _{7},\omega _{8} \right \}\left \{ \omega _{1},\omega _{2},\omega _{3},\omega _{4} \right \}, \left \{ \omega _{5},\omega _{6},\omega _{7},\omega _{8} \right \}, \Omega \right \}

\mathfrak{F}_{3}=\mathbb{P}\left ( \Omega \right )

另外一种理解方式:

设每一次投掷的取值空间为\Sigma =\left \{ H,T \right \},因此

  • \mathfrak{F}_{0}=\left \{ \phi ,\Sigma \right \},需要注意的是这里的\left \{ H,T \right \}=\left \{ \omega _{1}, \omega _{2}, \omega _{3}, \omega _{4}, \omega _{5}, \omega _{6}, \omega _{7}, \omega _{8} \right \}
  • \mathfrak{F}_{1}=\mathbb{P}\left ( \Sigma \right )=\left \{ \phi ,\left \{ H \right \},\left \{ T \right \} ,\Sigma \right \}
  • \mathfrak{F}_{2}=\mathbb{P}\left ( \Sigma\times \Sigma \right )
  • \mathfrak{F}_{3}=\mathbb{P}\left ( \Sigma\times \Sigma \right \times \Sigma )

回到鞅的定义就可以知道,鞅的定义中第一个条件是指估计的过程\left \{ X_{n}, n\geqslant 0 \right \}与观察过程之间存在一定的内在联系,也就是要求估计的过程可以表示为观察的过程\left \{ Y_{n}, n\geqslant 0 \right \}的函数,比如独立同分布随机变量的和是鞅、独立随机变量的平方和是鞅等等。

当我们写鞅的时候写成E\left ( X_{n+1}\mid Y_{0}, Y_{1}, \cdot \cdot \cdot, Y_{n}\right ),同样的可以写成E\left ( X_{n+1}\mid \mathfrak{F}_{n}\right )

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值