证明命题:
对于任意满足正态分布的随机变量 X , Y X,Y X,Y,有 X , Y X,Y X,Y不相关 ⇔ \Leftrightarrow ⇔ X , Y X,Y X,Y独立
-
如果 X , Y X,Y X,Y独立,则必有 X , Y X,Y X,Y不相关
因为 X , Y X,Y X,Y独立,那么有 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y),则其协方差 C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)−E(X)E(Y)等于 0 0 0,相关系数 ρ = C o v ( X , Y ) D ( X ) D ( Y ) \rho = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρ=D(X)D(Y)Cov(X,Y),所以其相关系数为 0 0 0,所以不相关。 -
接下来就要证明正态分布的 X , Y X,Y X,Y不相关,则其独立
由多维正态分布随机变量的联合分布概率密度函数公式:
f ( N ) = 1 ( 2 π ) D / 2 ∣ Σ ∣ 1 / 2 exp ( − 1 2 ( N − μ ) T Σ − 1 ( N − μ ) ) f(\boldsymbol N) = \frac{1}{{(2\pi)}^{D/ 2}{\left|\boldsymbol \Sigma\right|}^{1/ 2}}\mathrm{\exp}( - \frac{1}{2}{(\boldsymbol N - \boldsymbol \mu)}^T\boldsymbol \Sigma^{ - 1}(\boldsymbol N - \boldsymbol \mu)) f(N)=(2π)D/2∣Σ∣1/21exp(−21(N−μ)TΣ−1(N−μ))
其中
N 是多个随机变量组成的随机矢量 , n 行 1 列 Σ 是随机矢量的协方差矩阵 μ 是 N 的期望矢量, n 行 1 列 \begin{aligned} &\boldsymbol N 是多个随机变量组成的随机矢量,n行1列 \\ &\boldsymbol \Sigma是随机矢量的协方差矩阵 \\ &\boldsymbol \mu 是\boldsymbol N的期望矢量,n行1列 \end{aligned} N是多个随机变量组成的随机矢量,n行1列Σ是随机矢量的协方差矩阵μ是N的期望矢量,n行1列
在二维随机变量中,协方差矩阵是一个二维矩阵,不难计算它的逆。
协方差矩阵的公式为:
Σ = E ( ( N − E ( N ) ) ‾ ( N − E ( N ) ) T ) \boldsymbol \Sigma = E(\underline{(\boldsymbol N - E(\boldsymbol N))}(\boldsymbol N - E(\boldsymbol N))^T) Σ=E((N−E(N))(N−E(N))T)其中
N = ( X , Y ) T \boldsymbol N = (\boldsymbol X,\boldsymbol Y)^T N=(X,Y)T
可以按照公式 A − 1 = A ∗ ∣ A ∣ A^{-1} = \frac{A^*}{|A|} A−1=∣A∣A∗进行求解(其中 A ∗ A^* A∗是A的伴随矩阵,伴随矩阵是余因子矩阵的转置矩阵,余因子矩阵的每个元素是原矩阵 A A A对应元素的代数余子式,某元素的代数余子式即去掉该元素所在行列之后得到的矩阵的行列式)。这一段话涉及了很多线性代数的概念。可以看着下面的公式去一步步推导。
A = [ a b c d ] A − 1 = 1 a d − b c [ d − b − c a ] \begin{aligned} A&=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ A^{-1}&=\dfrac {1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \end{aligned} AA−1=[acbd]=ad−bc1[d−c−ba]
所以有,二维随机变量(也即2行1列的随机矢量)的概率密度函数 f ( x , y ) f(x,y) f(x,y)为:
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e q f\left( x,y\right) =\dfrac {1}{2\pi \sigma _{1}\sigma _{2}\sqrt {1-\rho ^{2}}}e^{q} f(x,y)=2πσ1σ21−ρ21eq
其中:
q = − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] q=\dfrac {-1}{2\left( 1-\rho ^{2}\right) }\left[ \dfrac {\left( x-\mu _{1}\right) ^{2}}{\sigma_1^{2}}-2\rho \dfrac {\left( x-\mu _{1}\right) \left( y-\mu _{2}\right) }{\sigma _{1}\sigma _{2}}+\dfrac {\left( y-\mu _2\right) ^{2}}{\sigma ^2_{2}}\right] q=2(1−ρ2)−1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]
ρ = C o v ( X , Y ) σ 1 σ 2 \rho =\dfrac {Cov\left( X,Y\right) }{\sigma _{1}\sigma _{2}} ρ=σ1σ2Cov(X,Y)
σ 1 , σ 2 \sigma_1,\sigma_2 σ1,σ2分别是 X , Y X,Y X,Y的标准差, μ 1 , μ 2 \mu_1,\mu_2 μ1,μ2分别是 X , Y X,Y X,Y的期望
而:
f
(
x
)
=
1
2
π
σ
1
e
x
p
(
−
(
x
−
μ
1
)
2
2
σ
1
2
)
f(x)= \dfrac {1}{\sqrt {2\pi }\sigma_1} exp(-\dfrac {\left( x-\mu_1 \right) ^2}{2\sigma_1^2})
f(x)=2πσ11exp(−2σ12(x−μ1)2)
f
(
y
)
=
1
2
π
σ
2
e
x
p
(
−
(
y
−
μ
2
)
2
2
σ
2
2
)
f(y) = \dfrac {1}{\sqrt {2\pi }\sigma_2 }exp(\small{-\dfrac {\left( y-\mu_2 \right) ^2}{2\sigma_2^2}})
f(y)=2πσ21exp(−2σ22(y−μ2)2)
f
(
x
)
f
(
y
)
=
1
2
π
σ
1
σ
2
e
x
p
(
(
x
−
μ
1
)
2
σ
1
2
+
(
y
−
μ
2
)
2
σ
2
2
)
f(x)f(y) = \dfrac{1}{2 \pi \sigma_1 \sigma_2}exp(\dfrac{( x-\mu_1) ^2}{\sigma_1^2}+\dfrac{(y-\mu_2)^2}{\sigma^2_2})
f(x)f(y)=2πσ1σ21exp(σ12(x−μ1)2+σ22(y−μ2)2)
可以看出,有
ρ
=
0
⇒
f
(
x
,
y
)
=
f
(
x
)
f
(
y
)
\rho=0 \Rightarrow f(x,y)=f(x)f(y)
ρ=0⇒f(x,y)=f(x)f(y),即不相关可以推导出独立。
综上1,2,命题左边可以推出右边,右边也可以推出左边,所以命题成立。