浙大概率第四版,证明正态分布随机变量不相关等价于独立

证明命题:

对于任意满足正态分布的随机变量 X , Y X,Y X,Y,有 X , Y X,Y X,Y不相关 ⇔ \Leftrightarrow X , Y X,Y X,Y独立

  1. 如果 X , Y X,Y X,Y独立,则必有 X , Y X,Y X,Y不相关
    因为 X , Y X,Y X,Y独立,那么有 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y),则其协方差 C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)等于 0 0 0,相关系数 ρ = C o v ( X , Y ) D ( X ) D ( Y ) \rho = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρ=D(X) D(Y) Cov(X,Y),所以其相关系数为 0 0 0,所以不相关。

  2. 接下来就要证明正态分布的 X , Y X,Y XY不相关,则其独立
    由多维正态分布随机变量的联合分布概率密度函数公式:
    f ( N ) = 1 ( 2 π ) D / 2 ∣ Σ ∣ 1 / 2 exp ⁡ ( − 1 2 ( N − μ ) T Σ − 1 ( N − μ ) ) f(\boldsymbol N) = \frac{1}{{(2\pi)}^{D/ 2}{\left|\boldsymbol \Sigma\right|}^{1/ 2}}\mathrm{\exp}( - \frac{1}{2}{(\boldsymbol N - \boldsymbol \mu)}^T\boldsymbol \Sigma^{ - 1}(\boldsymbol N - \boldsymbol \mu)) f(N)=(2π)D/2Σ1/21exp(21(Nμ)TΣ1(Nμ))
    其中
    N 是多个随机变量组成的随机矢量 , n 行 1 列 Σ 是随机矢量的协方差矩阵 μ 是 N 的期望矢量, n 行 1 列 \begin{aligned} &\boldsymbol N 是多个随机变量组成的随机矢量,n行1列 \\ &\boldsymbol \Sigma是随机矢量的协方差矩阵 \\ &\boldsymbol \mu 是\boldsymbol N的期望矢量,n行1列 \end{aligned} N是多个随机变量组成的随机矢量,n1Σ是随机矢量的协方差矩阵μN的期望矢量,n1
    在二维随机变量中,协方差矩阵是一个二维矩阵,不难计算它的逆。
    协方差矩阵的公式为:
    Σ = E ( ( N − E ( N ) ) ‾ ( N − E ( N ) ) T ) \boldsymbol \Sigma = E(\underline{(\boldsymbol N - E(\boldsymbol N))}(\boldsymbol N - E(\boldsymbol N))^T) Σ=E((NE(N))(NE(N))T)其中
    N = ( X , Y ) T \boldsymbol N = (\boldsymbol X,\boldsymbol Y)^T N=(X,Y)T
    可以按照公式 A − 1 = A ∗ ∣ A ∣ A^{-1} = \frac{A^*}{|A|} A1=AA进行求解(其中 A ∗ A^* A是A的伴随矩阵,伴随矩阵是余因子矩阵的转置矩阵,余因子矩阵的每个元素是原矩阵 A A A对应元素的代数余子式,某元素的代数余子式即去掉该元素所在行列之后得到的矩阵的行列式)。这一段话涉及了很多线性代数的概念。可以看着下面的公式去一步步推导。
    A = [ a b c d ] A − 1 = 1 a d − b c [ d − b − c a ] \begin{aligned} A&=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ A^{-1}&=\dfrac {1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \end{aligned} AA1=[acbd]=adbc1[dcba]
    所以有,二维随机变量(也即2行1列的随机矢量)的概率密度函数 f ( x , y ) f(x,y) f(x,y)为:
    f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e q f\left( x,y\right) =\dfrac {1}{2\pi \sigma _{1}\sigma _{2}\sqrt {1-\rho ^{2}}}e^{q} f(x,y)=2πσ1σ21ρ2 1eq
    其中:
    q = − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] q=\dfrac {-1}{2\left( 1-\rho ^{2}\right) }\left[ \dfrac {\left( x-\mu _{1}\right) ^{2}}{\sigma_1^{2}}-2\rho \dfrac {\left( x-\mu _{1}\right) \left( y-\mu _{2}\right) }{\sigma _{1}\sigma _{2}}+\dfrac {\left( y-\mu _2\right) ^{2}}{\sigma ^2_{2}}\right] q=2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]
    ρ = C o v ( X , Y ) σ 1 σ 2 \rho =\dfrac {Cov\left( X,Y\right) }{\sigma _{1}\sigma _{2}} ρ=σ1σ2Cov(X,Y)
    σ 1 , σ 2 \sigma_1,\sigma_2 σ1σ2分别是 X , Y X,Y X,Y的标准差, μ 1 , μ 2 \mu_1,\mu_2 μ1μ2分别是 X , Y X,Y X,Y的期望

而:
f ( x ) = 1 2 π σ 1 e x p ( − ( x − μ 1 ) 2 2 σ 1 2 ) f(x)= \dfrac {1}{\sqrt {2\pi }\sigma_1} exp(-\dfrac {\left( x-\mu_1 \right) ^2}{2\sigma_1^2}) f(x)=2π σ11exp(2σ12(xμ1)2)
f ( y ) = 1 2 π σ 2 e x p ( − ( y − μ 2 ) 2 2 σ 2 2 ) f(y) = \dfrac {1}{\sqrt {2\pi }\sigma_2 }exp(\small{-\dfrac {\left( y-\mu_2 \right) ^2}{2\sigma_2^2}}) f(y)=2π σ21exp(2σ22(yμ2)2)
f ( x ) f ( y ) = 1 2 π σ 1 σ 2 e x p ( ( x − μ 1 ) 2 σ 1 2 + ( y − μ 2 ) 2 σ 2 2 ) f(x)f(y) = \dfrac{1}{2 \pi \sigma_1 \sigma_2}exp(\dfrac{( x-\mu_1) ^2}{\sigma_1^2}+\dfrac{(y-\mu_2)^2}{\sigma^2_2}) f(x)f(y)=2πσ1σ21exp(σ12(xμ1)2+σ22(yμ2)2)
可以看出,有 ρ = 0 ⇒ f ( x , y ) = f ( x ) f ( y ) \rho=0 \Rightarrow f(x,y)=f(x)f(y) ρ=0f(x,y)=f(x)f(y),即不相关可以推导出独立。
综上1,2,命题左边可以推出右边,右边也可以推出左边,所以命题成立。

### 回答1: 概率论与数理统计是数学中的两个重要分支,它们研究的是不确定性问题和数据分析的理论与方法。浙江大学第四版csdn是指浙江大学出版的第四版概率论与数理统计教材,通过CSDN这个学习工具平台进行学习和交流。 概率论是研究随机现象的数学理论,它包括了概率随机变量、随机事件的概念和性质,以及各种随机现象的数学模型和分析方法。在实际应用中,我们经常会遇到一些不确定性的情况,概率论可以帮助我们计算和分析这些不确定性的大小和发生的可能性,为我们做出决策提供科学依据。 数理统计则是根据观测数据对总体进行推断的理论和方法。它主要研究如何通过样本数据来估计总体参数、检验总体假设、建立总体模型等。数理统计的应用非常广泛,比如通过对市场调查数据的分析来预测市场趋势,通过对临床试验数据的分析来评估一种新药的疗效等。 浙江大学第四版概率论与数理统计教材在内容上应该会有一些更新和改进。而CSDN作为一个在线学习和交流的平台,能够提供丰富的学习资源和交流机会,使学生可以更便捷地获取教材相关的学习资源和与其他学习者交流心得和解决问题的经验。 总之,概率论与数理统计是数学中的两个重要分支,它们的研究内容涉及到不确定性问题和数据分析的理论与方法。浙江大学第四版概率论与数理统计教材通过CSDN这个学习工具平台帮助学生更好地学习和交流。希望这些信息能对你有所帮助。 ### 回答2: 《概率论与数理统计(第四版)》是浙江大学出版社出版的一本统计学教材。该教材由田先正、田蕾、刘先林等合著,主要面向统计学专业的本科生和研究生。 这本教材的特点在于理论与实践相结合,内容涵盖了概率论和数理统计的基本知识,系统地介绍了这两门学科的基本理论和方法。教材的编写严谨、内容全面,既有基础的概率论和数理统计知识,也有一些拓展的内容,如随机过程与统计推断方法等。 教材的目录包括概率论基础、随机变量及其分布、多维随机变量及其分布、样本及抽样分布、参数估计、假设检验、回归分析与方差分析等章节。对于初学者来说,这本教材的逻辑清晰,步骤详细,易于理解和掌握。 此外,教材还配有大量的例题和习题,供学生进行练习和巩固知识。同时,教材还给出了一些实际数据的案例和分析,帮助学生将理论知识应用到实际问题中。 总之,《概率论与数理统计(第四版)》是一本权威的统计学教材,适用于浙江大学的学生以及其他对概率论和数理统计感兴趣的人士。无论从理论还是实践角度来看,这本教材都具有一定的参考价值,是学习、应用概率论和数理统计的良好教材。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝域小兵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值