2023认证杯C题:防雪崩措施|数学中国数学建模国际赛(小美赛) |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。
让我们来看看认证杯的C题!
在这里插入图片描述
完整内容可以在文章末尾领取!

题目重述

问题 C(ICM)
防雪崩措施

雪崩是一种极为危险的自然现象。如今,我们对雪崩的形成有很好的了解。然而,我们尚不能详细预测雪崩何时何地会发生[1]。村庄和道路可以通过各种方式来防范雪崩,例如避免在脆弱区域建设、通过植树造林或设置屏障来防止雪崩的形成、通过雪棚等保护结构来减小雪崩的影响,以及在积雪过多之前使用爆炸物人为触发雪崩等[2]。

我们现在关注的是使用爆炸物来触发人为小规模雪崩。需要确定的是触发爆炸的适当时机和相关参数。虽然使用更多的爆炸物可以提供更好的个人安全,但这会干扰这些地区动物的正常生活。在涉及人类安全时,通过人为触发雪崩使雪崩更安全在这方面具有深远意义。但自然保护协会不同意在大范围内人为触发雪崩,特别是在滑雪区域,对动物产生越来越负面的影响。

此外,当雪花落在温暖的地面上时,会被强风压缩并变硬[3]。由于广泛的大雪和强风的影响,雪变得越来越坚固,使成功触发的概率越来越低。这就是为什么我们需要你和你的团队建立合适的模型来研究这个问题。

任务:

  1. 找到有用且易于测量的参数,以衡量雪崩发生的风险。
  2. 对于有雪崩风险的坡度,我们需要进行简单的现场调查,以确定使用爆炸物诱发小雪崩的适当时机、爆炸物的放置位置和适当的爆炸威力。

问题一

  1. 确定目标:

    • 目标是建立一个模型,通过输入的参数预测雪崩是否可能发生。我们可以将问题定义为一个二元分类问题,其中1表示雪崩发生,0表示雪崩不发生。
  2. 参数选择:

    • 假设选择的参数为陡坡度(Slope Angle)、积雪深度(Snow Depth)、雪层稳定性(Snow Layer Stability)、气温(Temperature)、风速(Wind Speed)。
  3. 数据收集:

    • 收集历史雪崩事件的数据,包括目标变量(雪崩是否发生)和相关参数的测量值。
  4. 数据预处理:

    • 处理缺失值、异常值,进行标准化。可以使用公式:
      X normalized = X − μ σ X_{\text{normalized}} = \frac{X - \mu}{\sigma} Xnormalized=σXμ
      其中, X normalized X_{\text{normalized}} Xnormalized是标准化后的值, X X X是原始值, μ \mu μ是均值, σ \sigma σ是标准差。
  5. 建立机器学习模型:

    • 选择逻辑回归作为二元分类模型,因为我们的目标是预测雪崩是否发生。逻辑回归的公式为:
      P ( Y = 1 ) = 1 1 + e − ( β 0 + β 1 X 1 + β 2 X 2 + β 3 X 3 + β 4 X 4 + β 5 X 5 ) P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3 + \beta_4X_4 + \beta_5X_5)}} P(Y=1)=1+e(β0+β1X1+β2X2+β3X3+β4X4+β5X5)1
      其中, Y Y Y是二元目标变量, X 1 , X 2 , X 3 , X 4 , X 5 X_1, X_2, X_3, X_4, X_5 X1,X2,X3,X4,X5是输入参数, β 0 , β 1 , β 2 , β 3 , β 4 , β 5 \beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5 β0,β1,β2,β3,β4,β5是模型参数。
  6. 数据分割:

    • 将数据分为训练集和测试集,确保模型在未见过的数据上进行评估。
  7. 特征工程:

    • 在这里,可以考虑生成交互项,如 X 6 = X 1 × X 2 X_6 = X_1 \times X_2 X6=X1×X2,以捕捉输入参数之间的复杂关系。
  8. 模型训练:

    • 使用训练集对逻辑回归模型进行训练,调整模型参数以最小化对数似然损失。
  9. 模型调优:

    • 使用验证集进行超参数调优,可能涉及学习速率、正则化等。
  10. 性能评估:

    • 使用测试集评估模型的性能,可以使用混淆矩阵、准确度等指标。
  11. 结果解释:

    • 解释模型的系数,了解哪些参数对雪崩发生的影响最大。
  12. 部署和监控:

    • 将训练好的逻辑回归模型部署到实际应用中,并定期监控模型性能,考虑是否需要重新训练以适应新的数据。
# 导入必要的库
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix

# 示例数据(假设你已经有了实际数据)
data = {
    'Slope_Angle': [25, 30, 20, 15, 18, 22, 28, 35, 40, 32],
    'Snow_Depth': [1.2, 1.5, 1.0, 0.8, 1.3, 0.9, 1.8, 2.0, 2.2, 1.6],
    'Snow_Layer_Stability': [0.7, 0.6, 0.8, 0.9, 0.5, 0.8, 0.6, 0.7, 0.4, 0.9],
    'Temperature': [-3, -5, -2, -6, -1, -4, -7, -8, -10, -3],
    'Wind_Speed': [8, 10, 6, 12, 7, 9, 11, 14, 16, 13],
    'Avalanche_Occurred': [1, 1, 0, 0, 1, 0, 1, 1, 1, 0]  # 1表示雪崩发生,0表示雪崩未发生
}

# 创建DataFrame
df = pd.DataFrame(data)

# 分离特征和目标变量
X = df.drop('Avalanche_Occurred', axis=1)
y = df['Avalanche_Occurred']

# 数据分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 特征标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 构建并训练逻辑回归模型
model = LogisticRegression(random_state=42)
model.fit(X_train_scaled, y_train)

# 预测
y_pred = model.predict(X_test_scaled)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

# 输出结果
print("模型准确度:", accuracy)
print("混淆矩阵:\n", conf_matrix)

# 输出模型的系数(用于结果解释)

问题二

问题二涉及确定触发小规模雪崩的合适时机、爆炸物放置位置和适当的爆炸威力。
我们可以考虑使用ARIMA(自回归综合移动平均)模型。ARIMA是一种常用于处理时间序列数据的统计模型,适用于具有趋势和季节性的数据。

以下是使用ARIMA模型的思路:

  1. 数据准备:

    • 将历史触发雪崩的时间序列数据整理成时间序列格式,确保有序并按时间先后排列。
  2. 可视化分析:

    • 对时间序列数据进行可视化分析,观察是否存在趋势和季节性。这可以通过绘制时间序列图和自相关图实现。
  3. 平稳性检验:

    • ARIMA模型要求时间序列是平稳的。进行平稳性检验,如果序列不平稳,可以进行差分操作。
  4. 确定模型阶数:

    • 通过观察自相关图(ACF)和部分自相关图(PACF),确定ARIMA模型的阶数(p、d、q)。
  5. 拟合ARIMA模型:

    • 使用确定的阶数拟合ARIMA模型。
  6. 模型诊断:

    • 对拟合后的模型进行诊断,检查残差是否为白噪声。可以使用残差自相关图等进行诊断。
  7. 模型预测:

    • 利用训练好的ARIMA模型进行未来时间的触发雪崩的预测。
  8. 实地验证与调整:

    • 对模型的预测结果进行实地验证,并根据实际情况对模型进行调整。

以下是一个使用Python和Statsmodels库进行ARIMA建模的简单示例:

import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import adfuller

# 示例数据
# 请替换成实际的时间序列数据
data = {
    'Date': pd.date_range(start='2022-01-01', end='2023-12-31', freq='D'),
    'Avalanche_Occurred': [1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0]
}

df = pd.DataFrame(data)
df.set_index('Date', inplace=True)

# 可视化分析
plt.figure(figsize=(10, 6))
plt.plot(df.index, df['Avalanche_Occurred'], label='Avalanche Occurred')
plt.title('Avalanche Time Series')
plt.xlabel('Date')
plt.ylabel('Avalanche Occurred')
plt.legend()
plt.show()

# 平稳性检验
result = adfuller(df['Avalanche_Occurred'])
print("ADF Statistic:", result[0])
print("p-value:", result[1])

# 差分操作
df_diff = df.diff().dropna()

# 再次可视化分析
plt.figure(figsize=(10, 6))
plt.plot(df_diff.index, df_diff['Avalanche_Occurred'], label='Differenced Avalanche Occurred')
plt.title('Differenced Avalanche Time Series')
plt.xlabel('Date')
plt.ylabel('Differenced Avalanche Occurred')
plt.legend()
plt.show()

# 确定模型阶数
plot_acf(df_diff['Avalanche_Occurred'])
plot_pacf(df_diff['Avalanche_Occurred'])
plt.show()

# 拟合ARIMA模型
order = (1, 1, 1)  # 通过观察ACF和PACF确定的阶数
model = ARIMA(df['Avalanche_Occurred'], order=order)
fit_model = model.fit()

# 模型诊断
fit_model.plot_diagnostics()
plt.show()

# 模型预测见完整版

在这个代码中,我们首先进行了可视化分析,检验了时间序列的平稳性,进行了差分操作。然后,通过观察自相关图和部分自相关图,确定了ARIMA模型的阶数。接着,我们拟合了ARIMA模型,并进行了模型的诊断。最后,我们使用训练好的模型进行未来时间的雪崩触发预测。

更多内容具体可以看看我的下方名片!里面包含有认证杯一手资料与分析!
另外在赛中,我们也会陪大家一起解析认证杯的一些方向
关注 CS数模 团队,数模不迷路~

  • 22
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值