前言:仅个人小记。我们知道群中任意一个元素都可以通过自乘形成循环群,但是循环群的子群难道也必然是循环群吗?也就是说循环群的子群也必然是由某个元素生成的循环群?也就是说,循环群的子群只可能是那些由元素自乘生成的循环群!
借助拓展欧几里得算法来实施证明。
前要知识
- 有限群的任意元素的阶都是存在的,且元素的阶必然整除群阶。
证明内容
循环群的子群必然还是循环群。
证明
设循环群 G , 生成元为 g,群阶 ∣ G ∣ = n |G|=n ∣G∣=n,因为循环群 G 中的任意一个元素都可以表达为生成元的幂的形式,故而,若 H 为 循环群 G 的一个子群,则必然可写为
{ g k 1 , g k 2 , . . . , g k m } , 1 < k 1 < k 2 < . . . < k m ≤ n \{g^{k_1},g^{k_2},...,g^{k_m}\},1<k_1<k_2<...<k_m\leq n {gk1,gk2,...,gkm},1<k1<k2<...<km≤n并引入
d = m i n { k 1 , k 2 , . . . , k m } d=min\{k_1,k_2,...,k_m\} d=min{k1,k2,...,km}
因为G是一个有限群,结合前要知识1知道,G中的任一元素的阶都存在,即任一元素都可以形成一个循环子群。故而对于元素 g d g^d gd,必然可以形成循环子群 < g d > <g^d> <gd>。
下面使用反证法:
假设 H 不是一个循环群,则必然存在
g k i ∈ H , g k i ∉ < g d > g^{k_i}\in H, g^{k_i} \notin <g^d> gki∈H,gki∈/<gd>故而
k i = q d + r , q , r 为 整 数 , 0 < r ≤ d k_i=qd+r,q,r 为整数,0<r\leq d ki=qd+r,q,r为整数,0<r≤d又因为 H 是群,故而元素都可逆,容易知道 ( g d ) − 1 = g − d (g^d)^{-1}=g^{-d} (gd)−1=g−d再因为封闭性,有
g − q d g k i = g − q d g q d + r = g r ∈ H g^{-qd}g^{k_i}=g^{-qd}g^{qd+r}=g^r\in H g−qdgki=g−qdgqd+r=gr∈H因为 d = m i n { k 1 , k 2 , . . . , k m } d=min\{k_1,k_2,...,k_m\} d=min{k1,k2,...,km}, r < d r<d r<d,故而矛盾,故而假设不成立,故而 G 的任意子群 H 必然是一个循环群。
