深度学习目标检测数据集下载

coco与voc数据集下载与准备
coco与voc数据集下载
在远程服务器上测试目标检测算法需要用到测试集,最常用的是coco2014/2017和voc07/12数据集。
coco数据集的地址为http://cocodataset.org/#download
voc和coco的镜像为https://pjreddie.com/projects/pascal-voc-dataset-mirror/
本文做一次记录,方便以后使用。
具体的文件夹结构与detectron2相似:

voc
VOC_ROOT
|__ VOC2007
|_ JPEGImages
|_ Annotations
|_ ImageSets
|_ SegmentationClass
|__ VOC2012
|_ JPEGImages
|_ Annotations
|_ ImageSets
|_ SegmentationClass
|__ …
mkdir voc && cd voc

voc 2012

wget http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar && tar -xvf VOCtrainval_11-May-2012.tar && rm VOCtrainval_11-May-2012.tar
wget http://pjreddie.com/media/files/VOC2012test.tar && tar -xvf VOC2012test.tar && rm VOC2012test.tar
mv VOCdevkit/VOC2012/ ./

voc 2007

wget http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar && tar -xvf VOCtrainval_06-Nov-2007.tar && rm VOCtrainval_06-Nov-2007.tar
wget http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar && tar -xvf VOCtest_06-Nov-2007.tar && rm VOCtest_06-Nov-2007.tar
mv VOCdevkit/VOC2007/ ./
rm -rf VOCdevkit
coco
COCO_ROOT
|__ annotations
|_ instances_valminusminival2014.json
|_ instances_minival2014.json
|_ instances_train2014.json
|_ instances_val2014.json
|_ …
|__ train2014
|_ .jpg
|_ …
|_ .jpg
|__ val2014
|_ .jpg
|_ …
|_ .jpg
|__ …

coco2017 train118k val5k

wget -c http://images.cocodataset.org/zips/train2017.zip &&
unzip train2017.zip && rm train2017.zip &&
wget -c http://images.cocodataset.org/annotations/annotations_trainval2017.zip &&
unzip annotations_trainval2017.zip && rm annotations_trainval2017.zip &&
wget -c http://images.cocodataset.org/zips/val2017.zip &&
unzip val2017.zip && rm val2017.zip

coco2014 train83k val 41k

wget http://images.cocodataset.org/zips/train2014.zip && unzip train2014.zip && rm train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip && unzip val2014.zip && rm val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip && unzip annotations_trainval2014.zip && rm annotations_trainval2014.zip

5k image ‘minival’ subset and val2014 (set) minus minival (~35k images)

wget https://dl.dropboxusercontent.com/s/s3tw5zcg7395368/instances_valminusminival2014.json.zip?dl=0 && unzip instances_valminusminival2014.json.zip?dl=0
mv instances_valminusminival2014.json annotations/ && rm instances_valminusminival2014.json.zip?dl=0
wget https://dl.dropboxusercontent.com/s/o43o90bna78omob/instances_minival2014.json.zip?dl=0 && unzip instances_minival2014.json.zip?dl=0
mv instances_minival2014.json annotations/ && rm instances_minival2014.json.zip?dl=0
coco2014也有镜像

mirror

wget https://pjreddie.com/media/files/train2014.zip && unzip train2014.zip && rm train2014.zip
wget https://pjreddie.com/media/files/val2014.zip && unzip val2014.zip && rm val2014.zip
wget https://pjreddie.com/media/files/instances_train-val2014.zip && unzip instances_train-val2014.zip && rm instances_train-val2014.zip

转载:https://www.cnblogs.com/zi-wang/p/12325664.html

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值