强化学习
文章平均质量分 51
jkewang
这个作者很懒,什么都没留下…
展开
-
Reinforcement Learning学习笔记(一)综述
强化学习是机器学习的一大分支,随着alphaGo的巨大成功,其使用的强化学习方法也逐渐成为近年来的研究热点。个人理解强化学习与一般的机器学习主要有一下几点差别,既有优势又有不足。原创 2017-10-13 14:55:41 · 2482 阅读 · 0 评论 -
Reinforment Learning 学习笔记(二) Q-Learning
Q-Learning是强化学习初期提出的一种较为简单的方法,其核心思想为对每个状态下的每一种行为进行打分,然后根据分数的高低进行选择,接着根据选择此行为后获得的实际奖赏来对打分系统进行更新。传统Q-Learning面对的是有限状态空间、有限动作空间,并且空间大小都足够简单,因此可以维护一张表格来进行存储,即存储状态-动作及相应的分数。原创 2017-10-13 15:09:37 · 1369 阅读 · 0 评论 -
Reinforcement Learning 学习笔记(三)DQN
DQN的改进与思想原创 2017-10-13 16:15:48 · 866 阅读 · 0 评论