[高等数学&学习记录]函数的极值与最大值最小值

1 知识点


1.1 函数的极值及其求法


定义

设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某邻域 U ˚ ( x 0 ) \mathring{U}(x_0) U˚(x0) 内有定义,如果对于去心邻域 U ˚ ( x 0 ) \mathring{U}(x_0) U˚(x0) 内的任一 x x x,有 f ( x ) < f ( x 0 ) ( f(x)<f(x_0)( f(x)<f(x0)( f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0),那么就称 f ( x 0 ) f(x_0) f(x0) 是函数 f ( x ) f(x) f(x) 的一个极大值(或极小值)。

函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。


定理1(必要条件)

设函数 f ( x ) f(x) f(x) x 0 x_0 x0 处可导,且在 x 0 x_0 x0 处取得极值,那么 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0


定理2(第一充分条件)

设函数 f ( x ) f(x) f(x) x 0 x_0 x0 处连续,且在 x 0 x_0 x0 的某去心邻域 U ˚ ( x 0 , δ ) \mathring{U}(x_0,\delta) U˚(x0,δ) 内可导。

(1) 若 x ∈ ( x 0 − δ , x 0 ) x\in (x_0-\delta,x_0) x(x0δ,x0) 时, f ′ ( x ) > 0 f'(x)>0 f(x)>0,而 x ∈ ( x 0 , x 0 + δ ) x\in (x_0,x_0+\delta) x(x0,x0+δ) 时, f ′ ( x ) < 0 f'(x)<0 f(x)<0,则 f ( x ) f(x) f(x) x 0 x_0 x0 处取得极大值;

(2) 若 x ∈ ( x 0 − δ , x 0 ) x\in(x_0-\delta,x_0) x(x0δ,x0) 时, f ′ ( x ) < 0 f'(x)<0 f(x)<0,而 x ∈ ( x 0 , x 0 + δ ) x\in(x_0,x_0+\delta) x(x0,x0+δ) 时, f ′ ( x ) > 0 f'(x)>0 f(x)>0,则 f ( x ) f(x) f(x) x 0 x_0 x0 处取得极小值;

(3) 若 x ∈ U ˚ ( x 0 , δ ) x\in \mathring{U}(x_0,\delta) xU˚(x0,δ) 时, f ′ ( x ) f'(x) f(x) 的符号保持不变, f ( x ) f(x) f(x) x 0 x_0 x0 处没有极值。


定理3(第二充分条件)

设函数 f ( x ) f(x) f(x) x 0 x_0 x0 处具有二阶导数且 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0 f ′ ′ ( x 0 ) ≠ 0 f''(x_0)\neq 0 f′′(x0)=0,那么

(1) 当 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f′′(x0)<0 时,函数 f ( x ) f(x) f(x) x 0 x_0 x0 处取得极大值;

(2) 当 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f′′(x0)>0 时,函数 f ( x ) f(x) f(x) x 0 x_0 x0 处取得极小值。


1.2 最大值最小值问题


f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最大值最小值的方法:

(1) 求出 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 内的驻点 x 1 , x 2 , ⋯   , x m x_1,x_2,\cdots,x_m x1,x2,,xm 及不可导点 x 1 ′ , x 2 ′ , ⋯   , x n ′ x'_1,x'_2,\cdots,x'_n x1,x2,,xn

(2) 计算 f ( x i ) ( i = 1 , 2 , ⋯   , m ) f(x_i)(i=1,2,\cdots,m) f(xi)(i=1,2,,m) f ′ ( x j ′ ) ( j = 1.2. ⋯   , n ) f'(x'_j)(j=1.2.\cdots,n) f(xj)(j=1.2.,n) f ( a ) f(a) f(a) f ( b ) f(b) f(b)

(3) 比较 (2) 中诸值的大小,其中最大的便是 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最大值,最小值便是 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的最小值。


2 练习题


2.1

求下列函数的极值

题:

y = 2 x 3 − 6 x 2 − 18 x + 7 y=2x^3-6x^2-18x+7 y=2x36x218x+7

解:

f ′ ( x ) = 6 x 2 − 12 x − 18 f'(x)=6x^2-12x-18 f(x)=6x212x18

f ′ ′ ( x ) = 12 x − 12 f''(x)=12x-12 f′′(x)=12x12

f ′ ( x ) = 0 f'(x)=0 f(x)=0 时,得 x 1 = 3 x_1=3 x1=3 x 2 = − 1 x_2=-1 x2=1

∵ f ′ ′ ( 3 ) = 24 > 0 \because f''(3)=24>0 f′′(3)=24>0

∴ x = 3 \therefore x=3 x=3 f ( x ) f(x) f(x) 取得极小值: f ( 3 ) = − 47 f(3)=-47 f(3)=47

∵ f ′ ′ ( − 1 ) = − 24 < 0 \because f''(-1)=-24<0 f′′(1)=24<0

∴ x = − 1 \therefore x=-1 x=1 f ( x ) f(x) f(x) 取得极大值: f ( − 1 ) = 17 f(-1)=17 f(1)=17


题:

y = x − l n ( 1 + x ) y=x-ln(1+x) y=xln(1+x)

解:

f ′ ( x ) = 1 − 1 1 + x f'(x)=1-\frac{1}{1+x} f(x)=11+x1

f ′ ′ ( x ) = 1 ( 1 + x ) 2 f''(x)=\frac{1}{(1+x)^2} f′′(x)=(1+x)21

f ′ ( x ) = 0 f'(x)=0 f(x)=0 时,得 x = 0 x=0 x=0

∵ f ′ ′ ( 0 ) = 1 > 0 \because f''(0)=1>0 f′′(0)=1>0

∴ x = 0 \therefore x=0 x=0 f ( x ) f(x) f(x) 取得极小值, f ( 0 ) = 0 f(0)=0 f(0)=0


题:

y = − x 4 + 2 x 2 y=-x^4+2x^2 y=x4+2x2

解:

f ′ ( x ) = − 4 x 3 + 4 x f'(x)=-4x^3+4x f(x)=4x3+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测绘驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值