1 知识点
1.1 函数的极值及其求法
定义
设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某邻域 U ˚ ( x 0 ) \mathring{U}(x_0) U˚(x0) 内有定义,如果对于去心邻域 U ˚ ( x 0 ) \mathring{U}(x_0) U˚(x0) 内的任一 x x x,有 f ( x ) < f ( x 0 ) ( f(x)<f(x_0)( f(x)<f(x0)( 或 f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0),那么就称 f ( x 0 ) f(x_0) f(x0) 是函数 f ( x ) f(x) f(x) 的一个极大值(或极小值)。
函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。
定理1(必要条件)
设函数 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处可导,且在 x 0 x_0 x0 处取得极值,那么 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0。
定理2(第一充分条件)
设函数 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处连续,且在 x 0 x_0 x0 的某去心邻域 U ˚ ( x 0 , δ ) \mathring{U}(x_0,\delta) U˚(x0,δ) 内可导。
(1) 若 x ∈ ( x 0 − δ , x 0 ) x\in (x_0-\delta,x_0) x∈(x0−δ,x0) 时, f ′ ( x ) > 0 f'(x)>0 f′(x)>0,而 x ∈ ( x 0 , x 0 + δ ) x\in (x_0,x_0+\delta) x∈(x0,x0+δ) 时, f ′ ( x ) < 0 f'(x)<0 f′(x)<0,则 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处取得极大值;
(2) 若 x ∈ ( x 0 − δ , x 0 ) x\in(x_0-\delta,x_0) x∈(x0−δ,x0) 时, f ′ ( x ) < 0 f'(x)<0 f′(x)<0,而 x ∈ ( x 0 , x 0 + δ ) x\in(x_0,x_0+\delta) x∈(x0,x0+δ) 时, f ′ ( x ) > 0 f'(x)>0 f′(x)>0,则 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处取得极小值;
(3) 若 x ∈ U ˚ ( x 0 , δ ) x\in \mathring{U}(x_0,\delta) x∈U˚(x0,δ) 时, f ′ ( x ) f'(x) f′(x) 的符号保持不变, f ( x ) f(x) f(x) 在 x 0 x_0 x0 处没有极值。
定理3(第二充分条件)
设函数 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处具有二阶导数且 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0, f ′ ′ ( x 0 ) ≠ 0 f''(x_0)\neq 0 f′′(x0)=0,那么
(1) 当 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f′′(x0)<0 时,函数 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处取得极大值;
(2) 当 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f′′(x0)>0 时,函数 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处取得极小值。
1.2 最大值最小值问题
求 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上的最大值最小值的方法:
(1) 求出 f ( x ) f(x) f(x) 在 ( a , b ) (a,b) (a,b) 内的驻点 x 1 , x 2 , ⋯ , x m x_1,x_2,\cdots,x_m x1,x2,⋯,xm 及不可导点 x 1 ′ , x 2 ′ , ⋯ , x n ′ x'_1,x'_2,\cdots,x'_n x1′,x2′,⋯,xn′;
(2) 计算 f ( x i ) ( i = 1 , 2 , ⋯ , m ) f(x_i)(i=1,2,\cdots,m) f(xi)(i=1,2,⋯,m), f ′ ( x j ′ ) ( j = 1.2. ⋯ , n ) f'(x'_j)(j=1.2.\cdots,n) f′(xj′)(j=1.2.⋯,n) 及 f ( a ) f(a) f(a), f ( b ) f(b) f(b);
(3) 比较 (2) 中诸值的大小,其中最大的便是 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上的最大值,最小值便是 f ( x ) f(x) f(x) 在 [ a , b ] [a,b] [a,b] 上的最小值。
2 练习题
2.1
求下列函数的极值
题:
y = 2 x 3 − 6 x 2 − 18 x + 7 y=2x^3-6x^2-18x+7 y=2x3−6x2−18x+7
解:
f ′ ( x ) = 6 x 2 − 12 x − 18 f'(x)=6x^2-12x-18 f′(x)=6x2−12x−18
f ′ ′ ( x ) = 12 x − 12 f''(x)=12x-12 f′′(x)=12x−12
当 f ′ ( x ) = 0 f'(x)=0 f′(x)=0 时,得 x 1 = 3 x_1=3 x1=3, x 2 = − 1 x_2=-1 x2=−1
∵ f ′ ′ ( 3 ) = 24 > 0 \because f''(3)=24>0 ∵f′′(3)=24>0
∴ x = 3 \therefore x=3 ∴x=3 处 f ( x ) f(x) f(x) 取得极小值: f ( 3 ) = − 47 f(3)=-47 f(3)=−47
∵ f ′ ′ ( − 1 ) = − 24 < 0 \because f''(-1)=-24<0 ∵f′′(−1)=−24<0
∴ x = − 1 \therefore x=-1 ∴x=−1 处 f ( x ) f(x) f(x) 取得极大值: f ( − 1 ) = 17 f(-1)=17 f(−1)=17
题:
y = x − l n ( 1 + x ) y=x-ln(1+x) y=x−ln(1+x)
解:
f ′ ( x ) = 1 − 1 1 + x f'(x)=1-\frac{1}{1+x} f′(x)=1−1+x1
f ′ ′ ( x ) = 1 ( 1 + x ) 2 f''(x)=\frac{1}{(1+x)^2} f′′(x)=(1+x)21
当 f ′ ( x ) = 0 f'(x)=0 f′(x)=0 时,得 x = 0 x=0 x=0
∵ f ′ ′ ( 0 ) = 1 > 0 \because f''(0)=1>0 ∵f′′(0)=1>0
∴ x = 0 \therefore x=0 ∴x=0 处 f ( x ) f(x) f(x) 取得极小值, f ( 0 ) = 0 f(0)=0 f(0)=0
题:
y = − x 4 + 2 x 2 y=-x^4+2x^2 y=−x4+2x2
解:
f ′ ( x ) = − 4 x 3 + 4 x f'(x)=-4x^3+4x f′(x)=−4x3+