商业领域经常会涉及时间序列数据分析需求,例如:餐馆在一年中不同季节的销售情况预测,市场里生鲜商品的供应变化,或者企业售后服务随着节日大促到来的高峰需求变化等等。这些数据,都呈现着非常明显的随时间发生的周期性、季节性变化。
通过对历史数据的分析,预测未来一段时间的变化情况,是时间序列分析中比较常见的一种场景。沃丰科技 [Udesk] WFO(劳动力优化管理)系统中对客服工作量的预估(智能预测客服坐席工作量,预估下一时段空闲客服数量等),使用了GaussMind基于时间序列的预测算法,相对于以往的时间序列算法(如ARIMA算法),这种算法更加复杂、高效,允许数据分析人员设置参数进行人工修正,以AI技术支撑专业准确、灵活便捷的智能排班管理。
01算法简介
沃丰科技GaussMind时序算法是基于时间序列分解和机器学习的拟合来做的,在预测的序列上,叠加了周期性的变化趋势和突发性的突变点,能够在较快的时间内得到需要预测的结果;同时预留了接口,可以由统计人员、运营人员通过调整趋势变化强弱来调整算法输出效果。
由于传统计算方法准确度不高,基于AI、大数据的沃丰科技GaussMind时序算法在Udesk系统客服工作量计算领域取得了满意的效果。算法基于业务系统订单量的变化情况,同时叠加天气、假期等外部因素对话务量的影响,尽可能多的增加影响话务量的变量,通过使用深度学习或机器学习算法,Udesk智能预测呼入呼出电话数量,进一步进行优化排班。
02算法原理
一、采集多个领域的文本数据
收集某个客服组历史上的时序数据:通话数量、通话时间、呼损率等三个指标数据,时隙为半个小时(即历史数据中,每半个小时记录一次