泛运筹理论初探——Louvain算法简介

本文介绍了Louvain算法,一种用于社区发现的经典图挖掘算法。通过不断计算模块度变化,该算法能有效识别图中内部联系紧密、外部联系稀疏的群体。在金融风控等领域,Louvain算法能帮助发现诈骗团伙。文章详细阐述了算法的原理、步骤及其实用价值,强调其在无向图上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图论-图论算法之Louvain

社区发现算法简介之Louvain算法
    在本次文章中,我们将会介绍经典的社区发现方法,也就是Louvain算法。这种算法在社群发现等应用的效果较好,是比较经典的图挖掘类算法,在金融风控行业挖掘诈骗团伙等应用里有比较显著的效果。社区发现方法的目标是在整个图里面发现一些有聚集性特征的群体,这些群体的特征是内部的互相联系较为紧密,外部和其他点的联系较为稀疏。下面我们对算法思路和步骤进行介绍。
    Louvain算法的核心就是模块度的计算,它每一次将模块度变化更大的邻居团伙作为当前点的目标团伙,反复计算迭代后可以得到最终的社团发现结果。其中模块度的计算公式如下所示,我们发现其中A其实就是全图的邻接矩阵的某个位置的元素,而m其实是A矩阵所有元素的求和结果,这个公式的最后面有一个0-1函数,它的作用是如果两个点不属于同一个社区,那么将设置Q值为0,也就是不需要计算。
在这里插入图片描述
    在得到了模块度的公式后,我们进一步求模块度的变化结果,也就是计算当新的点加入到社区的时候,对于原有两个社区的变化,而公式也是用新的模块度Q值去减去原有两个旧的模块度Q值,经过化简后得到下述的式子。其中K(i,in) 指的是当前社区内部的所有节点和新的节点i所连接的边的权值之和;而K(i) 则是所有和节点i直接相连的边的权值之和;Σtot 的含义是当前社区边内部的权重之和再加上当前社区和其他社区相连接的边的权值之和的结果。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值