三维视觉
文章平均质量分 67
马少爷
机器人爱好者,个人公众号:机器人视觉
展开
-
点云离群点的移除
点云离群点的移除原创 2023-02-05 17:12:36 · 974 阅读 · 0 评论 -
点云双边滤波
点云双边滤波原创 2023-02-03 16:58:57 · 2217 阅读 · 0 评论 -
Matlab和PCL中的点云滤波
Matlab和PCL中的点云滤波原创 2023-02-03 14:13:44 · 1822 阅读 · 1 评论 -
点云的降采样
点云的降采样原创 2023-02-01 22:35:27 · 1509 阅读 · 1 评论 -
三维空间中散点平面拟合方法
三维空间中散点平面拟合方法原创 2023-01-13 15:48:50 · 3074 阅读 · 0 评论 -
迭代最近点ICP点云配准
迭代最近点ICP点云配准原创 2023-01-03 17:17:10 · 2000 阅读 · 2 评论 -
给刚博士毕业的年轻学者9点建议
给刚博士毕业的年轻学者9点建议原创 2022-12-25 11:36:37 · 927 阅读 · 0 评论 -
CloudCompare 的简单的使用说明
CloudCompare 的简单的使用说明原创 2022-12-25 11:32:30 · 3848 阅读 · 0 评论 -
ply点云文件转换为txt文件MATLAB
ply点云文件转换为txt文件MATLAB原创 2022-12-21 22:41:41 · 1348 阅读 · 0 评论 -
基于Python的FreeCAD二次开发
基于Python的FreeCAD二次开发原创 2022-11-12 22:46:34 · 2925 阅读 · 1 评论 -
3D建模软件FreeCAD
3D建模软件FreeCAD原创 2022-11-12 21:27:40 · 1347 阅读 · 0 评论 -
FreeCAD软件安装
FreeCAD软件安装原创 2022-11-12 19:48:18 · 3614 阅读 · 0 评论 -
RANSAC拟合直线和平面
RANSAC拟合直线和平面原创 2022-11-11 17:04:15 · 1230 阅读 · 0 评论 -
迭代最近邻ICP算法
迭代最近邻ICP算法原创 2022-11-11 11:46:06 · 741 阅读 · 0 评论 -
NormalSpaceSampling 基于法向空间的点云降采样
NormalSpaceSampling 基于法向空间的点云降采样原创 2022-11-11 11:26:08 · 604 阅读 · 0 评论 -
Matlab拟合三维点云
Matlab拟合三维点云原创 2022-10-12 17:17:46 · 370 阅读 · 0 评论 -
MATLAB点云处理函数整理
MATLAB点云处理函数整理原创 2022-10-12 16:40:15 · 5492 阅读 · 0 评论 -
PCL从CAD模型采样得到点云
PCL从CAD模型中采样得到点云原创 2022-10-08 23:26:48 · 947 阅读 · 0 评论 -
VS2015配置PCL1.8.1
VS2015配置PCL1.8.1原创 2022-10-08 21:59:50 · 1242 阅读 · 2 评论 -
PCL—点云的可视化(二)
点云的可视化原创 2022-08-19 22:22:01 · 2007 阅读 · 0 评论 -
PCL—从PCD文件中读取点云数据(一)
PCL—从PCD文件中读取点云数据(一)原创 2022-08-16 23:17:54 · 2088 阅读 · 0 评论 -
激光跟踪传感器的工作原理
激光跟踪传感器的工作原理原创 2022-08-05 14:50:53 · 1182 阅读 · 0 评论 -
基于数字孪生的机器人焊接自动编程关键技术
基于数字孪生的机器人焊接自动编程关键技术研究原创 2022-07-11 11:57:39 · 1796 阅读 · 0 评论 -
Not All Points Are Equal Learning Highly Efficient Point-based Detectors for 3D LiDAR Point
Not All Points Are Equal Learning Highly Efficient Point-based Detectors for 3D LiDAR Point原创 2022-07-06 11:28:04 · 693 阅读 · 0 评论 -
如何替换模型的骨干网络(backbone)
替换魔性的backbone原创 2022-07-06 11:05:02 · 2131 阅读 · 0 评论 -
Pointnet++学习
1、点云的归一化与反归一化归一化的作用:数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解def pc_normalize(pc): """ 对点云数据进行归一化 :param pc: 需要归一化的点云数据 :return: 归一化后的点云数据 """ # 求质心,也就是一个平移量,实际上就是求均值 centroid = np.mean(pc, axis=0) pc = pc - centroid m = np原创 2022-07-04 19:38:26 · 3876 阅读 · 0 评论 -
Pointnet++的改进
Pointnet++改进原创 2022-07-04 19:18:00 · 2507 阅读 · 0 评论 -
PointNeXt:通过改进的模型训练和缩放策略审视PointNet++
改进的pointnet++原创 2022-07-04 15:30:52 · 868 阅读 · 0 评论 -
3D建模与处理软件简介 刘利刚 中国科技大学
3D建模软件原创 2022-06-30 23:11:52 · 2129 阅读 · 0 评论 -
PyTorch学习(三)
PyTorch学习原创 2022-06-30 11:14:13 · 1924 阅读 · 0 评论 -
PyTorch学习(一)
Pytorch学习1原创 2022-06-28 23:17:59 · 1389 阅读 · 0 评论 -
MT-yolov6训练及测试
MT-yolov6训练及测试原创 2022-06-28 20:51:38 · 663 阅读 · 1 评论 -
PointNet/Pointnet++训练及测试
PointNet/Pointnet++训练及测试原创 2022-06-28 17:51:46 · 2869 阅读 · 1 评论 -
Pointnet/Pointnet++学习
Pointnet++学习原创 2022-06-25 14:10:12 · 5367 阅读 · 0 评论 -
Pointnet C++ Win10部署
Pointnet C++部署原创 2022-06-24 15:02:04 · 1563 阅读 · 1 评论 -
相机投影矩阵的计算
摄像机标定(Camera calibration)中存在的一个关键问题:如何求解投影矩阵有了投影矩阵,我们便可以把世界坐标系变化到图像坐标系。本文主要通过最小二乘法来求解投影矩阵。已知条件n个三维世界坐标点(保存在dat文件中)n个二维图像坐标点(保存在dat文件中)使用工具:环境:windows10+python3.7+pycharm2019第三方库:numpy代码如下:1. 读取dat文件其中文件每一行都是一个三维坐标或二维坐标,因此按行读取,按列存储# 三维x3, y3, z3原创 2022-05-30 11:54:21 · 2712 阅读 · 3 评论 -
双目视觉+结构光三维重建原理
结构光三维重建系统是由一个相机和一个投影仪组成,关于结构光三维重建系统的理论有很多,其中有一个简单的模型是把投影仪看做相机来使用,从而得到物体的三维信息。接下来我将详细介绍这个模型的原理。(这是一个相机和一个投影仪的三维重建模型)在把投影仪当相机使用之前,我们得知道如何通过两个相机的信息得到物体的三维信息。如图所示是一个双目相机系统,如果只有一个相机(以左相机为例),相机上的一个像素点可以对应三维空间中光心与相机成像点连线OP上的无穷个点,所以仅凭一个相机的信息是无法得到空间中物体的三维信息。但是如果原创 2022-05-20 15:45:19 · 3578 阅读 · 0 评论 -
PCL点云配准(ICP)
/*********************************** 点云配准 *****************************************/#include <pcl/memory.h> // for pcl::make_shared#include <pcl/point_types.h>#include <pcl/point_cloud.h>#include <pcl/point_representation.h>原创 2022-05-19 22:29:42 · 934 阅读 · 0 评论 -
多步相移法获取绝对相位(多频外差法)
1、四步相移法获取绝对相位#define PI 3.1415926#define step 4 //步数#define res_x 1024 //分辨率#define res_y 768#define res_z 1#define gray_max 220 //最大/最小灰度值#define gray_min 50void OnNewGrating(){ // TODO: 在此添加命令处理程序代码 //this->m_ViewController->Remove原创 2022-05-19 22:26:57 · 1962 阅读 · 1 评论 -
单目结构光三维重建直接标定相位和三维坐标
单目结构光三维重建基于结构光的重建包括了双目三维重建和单目三维重建,双目的重建方法主要采用双目立体视觉算法来匹配两幅图片的相位信息,可以参考我的多频外差双目重建,这里不做介绍了。主要还是介绍下我做的单目三维重建,当然结构光采用的方法还是基于多频外差的方法。传统的单目算法是将投影仪设备当做一个反向相机来处理的,其实质还是双目的立体匹配方法。这种方法缺点是投影仪的畸变大精度不高,而且标定过程也比较麻烦,还要从投影仪里面投射一幅标定还真实的标定放在一起,对于有点强迫症的我还是不想做这种。如是查了下原来还有更方便原创 2022-05-17 09:10:53 · 1495 阅读 · 2 评论