迭代最近邻ICP算法

ICP算法主要用于点云精配准,精度很高,但是相应的缺点就是迭代过程中容易陷入局部极值。具体的ICP算法推导过程很多书上都有,就不再详述了,此次仿真用的是SVD分解的方法。

%%% icp.m

clear;
close all;
clc;
 
data_source=load('satellite.txt');
data_source=data_source';
theta=4;  %旋转角度(此处只有绕z轴旋转)
t=[2,1.6,7];   %平移向量
[data_target,T0]=rotate(data_source,theta,t);  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%绘制两幅原始图像
x1=data_source(1,:);
y1=data_source(2,:);
z1=data_source(3,:);
x2=data_target(1,:);
y2=data_target(2,:);
z2=data_target(3,:);
figure;
scatter3(x1,y1,z1,'b');
hold on;
scatter3(x2,y2,z2,'r');
hold off;
 
T_final=eye(4,4);   %旋转矩阵初始值
iteration=0;
Rf=T_final(1:3,1:3);
Tf=T_final(1:3,4);
data_target=Rf*data_target+Tf*ones(1,size(data_target,2));    %初次更新点集(代表粗配准结果)
err=1;
while(err>0.001)
    iteration=iteration+1;    %迭代次数
    disp(['迭代次数ieration=',num2str(iteration)]);
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %利用欧式距离找出对应点集
    k=size(data_target,2);
    for i = 1:k
        data_q1(1,:) = data_source(1,:) - data_target(1,i);    % 两个点集中的点x坐标之差
        data_q1(2,:) = data_source(2,:) - data_target(2,i);    % 两个点集中的点y坐标之差
        data_q1(3,:) = data_source(3,:) - data_target(3,i);    % 两个点集中的点z坐标之差
        distance = data_q1(1,:).^2 + data_q1(2,:).^2 + data_q1(3,:).^2;  % 欧氏距离
        [min_dis, min_index] = min(distance);   % 找到距离最小的那个点
        data_mid(:,i) = data_source(:,min_index);   % 将那个点保存为对应点
        error(i) = min_dis;     % 保存距离差值
    end
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %去中心化
    data_target_mean=mean(data_target,2);
    data_mid_mean=mean(data_mid,2);
    data_target_c=data_target-data_target_mean*ones(1,size(data_target,2));
    data_mid_c=data_mid-data_mid_mean*ones(1,size(data_mid,2));
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %SVD分解
    W=zeros(3,3);
    for j=1:size(data_target_c,2)
        W=W+data_mid_c(:,j)*data_target_c(:,j)';
    end
    [U,S,V]=svd(W);
    Rf=U*V';
    Tf=data_mid_mean-Rf*data_target_mean;
    err=mean(error);
    T_t=[Rf,Tf];
    T_t=[T_t;0,0,0,1];
    T_final=T_t*T_final;   %更新旋转矩阵
    disp(['误差err=',num2str(err)]);
    disp('旋转矩阵T=');
    disp(T_final);
     
    data_target=Rf*data_target+Tf*ones(1,size(data_target,2));    %更新点集
    if iteration>=200
        break
    end
end
 
disp(inv(T0));  %旋转矩阵真值
 
x1=data_source(1,:);
y1=data_source(2,:);
z1=data_source(3,:);
x2=data_target(1,:);
y2=data_target(2,:);
z2=data_target(3,:);
figure;
scatter3(x1,y1,z1,'b');
hold on;
scatter3(x2,y2,z2,'r');
hold off;
%% rotate.m

function [data_q,T] = rotate(data,theta,t)
 
theta=-theta/180*pi;  
T=[cos(theta),sin(theta),0,t(1);
    -sin(theta),cos(theta),0,t(2);
    0,0,1,t(3);
    0,0,0,1];            %旋转矩阵
 
rows=size(data,2);
rows_one=ones(1,rows);
data=[data;rows_one];    %化为齐次坐标
 
data_q=T*data;
data_q=data_q(1:3,:);    %返回三维坐标

仿真结果(配准前和配准后):
在这里插入图片描述
在这里插入图片描述
旋转矩阵(真值和配准结果)
在这里插入图片描述
上面是比较好的配准结果,下面来一组局部极值的情况。

仿真结果(配准前和配准后):
在这里插入图片描述
在这里插入图片描述
旋转矩阵(真值和配准结果)
在这里插入图片描述
从上面两组仿真结果可以明显看到,ICP算法在一定情况下精度很高,很适合用来精配准,但是缺点在于需要很好的迭代初值,这个直接关系到配准结果的准确性,因此ICP最好不要单独使用,应该在该算法之前进行粗配准(该方法很多,比如利用特征点等)。另外,由于不知道两堆点云的点对对应关系,在此使用的是寻找最近点的方法,该方法最大的不足时运算量很大,因此如果在C++中使用,可以考虑采用KD-tree的存储方法提高搜索效率或者想办法进行高效率点云配对。

图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。 一个经典的应用是场景的重建,比如说一张茶几上摆了很多杯具,用深度摄像机进行场景的扫描,通常不可能通过一次采集就将场景中的物体全部扫描完成,只能是获取场景不同角度的点云,然后将这些点云融合在一起,获得一个完整的场景。

ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法。如下图所示,PR(红色点云)和RB(蓝色点云)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠。
在这里插入图片描述
 用数学语言描述如下,即ICP算法的实质是基于最小二乘法的最优匹配,它重复进行“确定对应关系的点集→计算最优刚体变换”的过程,直到某个表示正确匹配的收敛准则得到满足。
 
在这里插入图片描述
如果知道正确的点对应,那么两个点集之间的相对变换(旋转、平移)就可以求得封闭解。
在这里插入图片描述
首先计算两个点集X和P的质心,分别为μx和μp
在这里插入图片描述
然后在两个点集中分别减去对应的质心(Subtract the corresponding center of mass from every point in the two point sets before calculating the transformation)
在这里插入图片描述
目标函数E(R,t)的优化是ICP算法的最后一个阶段。在求得目标函数后,采用什么样的方法来使其收敛到最小,也是一个比较重要的问题。求解方法有基于奇异值分解的方法、四元数方法等。
在这里插入图片描述
在这里插入图片描述
如果初始点“足够近”,可以保证收敛性
在这里插入图片描述
ICP算法优点:

可以获得非常精确的配准效果
不必对处理的点集进行分割和特征提取
在较好的初值情况下,可以得到很好的算法收敛性
ICP算法的不足之处:

在搜索对应点的过程中,计算量非常大,这是传统ICP算法的瓶颈

标准ICP算法中寻找对应点时,认为欧氏距离最近的点就是对应点。这种假设有不合理之处,会产生一定数量的错误对应点

针对标准ICP算法的不足之处,许多研究者提出ICP算法的各种改进版本,主要涉及如下所示的6个方面。
在这里插入图片描述
标准ICP算法中,选用点集中所有的点来计算对应点,通常用于配准的点集元素数量都是非常巨大的,通过这些点集来计算,所消耗的时间很长。在后来的研究中,提出了各种方法来选择配准元素,这些方法的主要目的都是为了减小点集元素的数目,即如何选用最少的点来表征原始点集的全部特征信息。在点集选取时可以:1.选取所有点;2.均匀采样(Uniform sub-sampling );3.随机采样(Random sampling);4.按特征采样(Feature based Sampling );5.法向空间均匀采样(Normal-space sampling),如下图所示,法向采样保证了法向上的连续性(Ensure that samples have normals distributed as uniformly as possible)

在这里插入图片描述
基于特征的采样使用一些具有明显特征的点集来进行配准,大量减少了对应点的数目。
在这里插入图片描述
在这里插入图片描述
点集匹配上有:最近邻点(Closet Point)
在这里插入图片描述
法方向最近邻点(Normal Shooting)
在这里插入图片描述
投影法(Projection)
在这里插入图片描述

import numpy as np

def best_fit_transform(A, B):
‘’’
Calculates the least-squares best-fit transform between corresponding 3D points A->B
Input:
A: Nx3 numpy array of corresponding 3D points
B: Nx3 numpy array of corresponding 3D points
Returns:
T: 4x4 homogeneous transformation matrix
R: 3x3 rotation matrix
t: 3x1 column vector

‘’’
assert len(A) == len(B)

# translate points to their centroids
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
AA = A - centroid_A
BB = B - centroid_B

# rotation matrix
W = np.dot(BB.T, AA)
U, s, VT = np.linalg.svd(W)
R = np.dot(U, VT)

# special reflection case
if np.linalg.det(R) < 0:
   VT[2,:] *= -1
   R = np.dot(U, VT)


# translation
t = centroid_B.T - np.dot(R,centroid_A.T)

# homogeneous transformation
T = np.identity(4)
T[0:3, 0:3] = R
T[0:3, 3] = t

return T, R, t

def nearest_neighbor(src, dst):
‘’’
Find the nearest (Euclidean) neighbor in dst for each point in src
Input:
src: Nx3 array of points
dst: Nx3 array of points
Output:
distances: Euclidean distances (errors) of the nearest neighbor
indecies: dst indecies of the nearest neighbor
‘’’
indecies = np.zeros(src.shape[0], dtype=np.int)
distances = np.zeros(src.shape[0])
for i, s in enumerate(src):
    min_dist = np.inf
    for j, d in enumerate(dst):
        dist = np.linalg.norm(s-d)
        if dist < min_dist:
            min_dist = dist
            indecies[i] = j
            distances[i] = dist    
return distances, indecies

def icp(A, B, init_pose=None, max_iterations=50, tolerance=0.001):
‘’’
The Iterative Closest Point method
Input:
A: Nx3 numpy array of source 3D points
B: Nx3 numpy array of destination 3D point
init_pose: 4x4 homogeneous transformation
max_iterations: exit algorithm after max_iterations
tolerance: convergence criteria
Output:
T: final homogeneous transformation
distances: Euclidean distances (errors) of the nearest neighbor
# make points homogeneous, copy them so as to maintain the originals
src = np.ones((4,A.shape[0]))
dst = np.ones((4,B.shape[0]))
src[0:3,:] = np.copy(A.T)
dst[0:3,:] = np.copy(B.T)

# apply the initial pose estimation
if init_pose is not None:
    src = np.dot(init_pose, src)

prev_error = 0

for i in range(max_iterations):
    # find the nearest neighbours between the current source and destination points
    distances, indices = nearest_neighbor(src[0:3,:].T, dst[0:3,:].T)

    # compute the transformation between the current source and nearest destination points
    T,_,_ = best_fit_transform(src[0:3,:].T, dst[0:3,indices].T)

    # update the current source
# refer to "Introduction to Robotics" Chapter2 P28. Spatial description and transformations
    src = np.dot(T, src)

    # check error
    mean_error = np.sum(distances) / distances.size
    if abs(prev_error-mean_error) < tolerance:
        break
    prev_error = mean_error

# calculcate final tranformation
T,_,_ = best_fit_transform(A, src[0:3,:].T)

return T, distances
 if __name__ == "__main__":
A = np.random.randint(0,101,(20,3))    # 20 points for test

rotz = lambda theta: np.array([[np.cos(theta),-np.sin(theta),0],
                                   [np.sin(theta),np.cos(theta),0],
                                   [0,0,1]])
trans = np.array([2.12,-0.2,1.3])
B = A.dot(rotz(np.pi/4).T) + trans

T, distances = icp(A, B)

np.set_printoptions(precision=3,suppress=True)
print T

‘’’

上面代码创建一个源点集A(在0-100的整数范围内随机生成20个3维数据点),然后将A绕Z轴旋转45°并沿XYZ轴分别移动一小段距离,得到点集B。结果如下,可以看出ICP算法正确的计算出了变换矩阵。
在这里插入图片描述
1.首先需要明确公式里的变换是T(P→X), 即通过旋转和平移把点集P变换到X。我们这里求的变换是T(A→B),要搞清楚对应关系。

2.本例只用了20个点进行测试,ICP算法在求最近邻点的过程中需要计算20×20次距离并比较大小。如果点的数目巨大,那算法的效率将非常低。

3.两个点集的初始相对位置对算法的收敛性有一定影响,最好在“足够近”的条件下进行ICP配准。

ICP算法推导
在这里插入图片描述
常用的求解 R 和 t 的方法有:
SVD
非线性优化

非线性优化的描述比较繁琐,下面只介绍SVD方法。为了后面能使用SVD,我们需要在数学上做一点小小的变形。首先定义两组点云的质心(center of mass)为

在这里插入图片描述
在这里插入图片描述
并作出如下处理:
在这里插入图片描述
在这里插入图片描述

参考文献:ICP算法

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值