Autoware自称是世界上第一个自动驾驶all-in-one的开源软件,基于Apache2协议,在ROS机器人操作系统基础上开发而来,用于仿真实验。在github开源,从2016年12月发布1.0.0版本开始,到1.12.0alpha版本,维护者将其迁移到了gitlab上,而后在github上又将Autoware.AI部分替代原先Autoware版本,所以可以把现在github上的的Autoware.AI视为原Autoware的继任者。
历史版本简要回顾:
v1.2.0 支持ROS Kinetic版本,用于激光雷达追踪的kalman滤波,基于yolo_v2视觉跟踪,增加imu驱动,为NDT定位增加IMU和里程计选项,点云距离滤波,rosbag数据预处理;
v1.3.0 增加基于A*算法的避障,GPU的欧式聚类,基于DNN的交通灯识别;
v1.4.0 增加点云的地面滤波;
v1.5.0 增加Web-Ui,多斑马线检测器,ENet图像语义分割,开始支持aarch64架构,支持NVIDIA DrivePX2,为A*路径规划算法增加虚拟障碍物仿真;
v1.6.0 增加GPU-NDT匹配算法,可以控制一些机动车了,新的Rviz模型,增加了ray地面滤波(也就是多线激光雷达的点云地面滤波),增强了DecisionMarker,基于规则控制机动车,存在激光雷达旋转时NDT匹配算法不工作的问题;
v1.7.0 支持定位多种交通标志,支持IDS-imaging相机,支持北阳2D雷达,增加了多雷达标定工具,相机-雷达联合标定工具,支持Velodyne的32线激光雷达,支持AVT相机,基于MxNet的信号灯识别,增加yolo-v3检测器,增加了车辆状态节点和话题,NDT匹配算法的安全监视器,基于IMM-UKF-PDA的多目标跟踪算法,路径点速度重规划工具;
v1.8.0 开始有相应的demo视频公布在油管;新功能:视觉检测与点云检测的信息融合(YOLOV3)和数据融合(点云着色),为Nvidia Drive PX2和其他aach64架构提供交叉编译,支持西克Sick的LD-MRS激光雷达,点云地图的网格划分,现在可以限制NDT建图算法的最大扫描距离了;一些提升:欧式聚类区分点云更精确,最多支持8个激光雷达,加速point2image(应该是用了OpenMP提速)
v1.9.0 开始逐步弃用ROS indigo版本,基于简单的运动估计来估计物体运动,点云地图中静态目标的过滤(应该是和预建地图做差分),L-shape拟合稳定跟踪多辆车,速腾雷达驱动,无需英伟达的sdk也可以交叉编译
v1.10.0 不再支持ROS indigo,可以过滤掉离自身车辆较远的点云,增加FLIR ADK相机驱动,Ouster激光雷达驱动
v1.11.0 catkin不再支持编译源码,改用colcon;点云快速编码用于目标检测,百度的CNN用于点云分割,基于点云的外形/姿态估计;改进的混合A*算法和代价图;
v1.12.0 v1.13.0 v1.14.0都未有说明
Autoware被分为三个部分:Autoware.AI(继承了大部分算法,基于ROS1),Autoware.Auto(在原版本的基础上发展而来)