dynamicrafter_pytorch AIGC算法模型

DynamiCrafter

论文

DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors

模型结构

该模型对Stable Diffusion进行了扩展,使其可以生成视频。在训练时采用双流图像注入(Dual-stream image injection)机制,该机制以一种上下文感知的方式继承视觉细节并提取输入图像特征。模型的整体流程是这样的,输入分别是x以及𝑥𝑚(x中随机帧),视频x逐帧通过VAE的编码器部分获取 𝑧0,图像x_m通过编码器并Repeat后与z_t(𝑧0扩散后得到)拼接进入Denoising U-Net,同时,由𝑥𝑚经过CLIP image encoder以及Query transformer后得到的条件与FPSText特征一同进入U-Net进行训练。

算法原理

该算法在文本生成视频的基础上,增加了视觉信息,使得在视频生成的过程中可以保留视觉的细节信息。

环境配置

Docker(方法一)

docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk23.10.1-py38

docker run --shm-size 10g --network=host --name
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值