P3 仿射集


规划的难点在于凸规划/非凸规划。
stephen Boyd

Chapter 2 Convex Sets

仿射集 Affine Sets

直线:
x 1 ≠ x 2 ∈ R n θ ∈ R x_1 \not= x_2 \in R^n \quad \theta \in R x1=x2RnθR
y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) y=\theta x_1 + (1-\theta)x_2 = x_2 + \theta(x_1-x_2) y=θx1+(1θ)x2=x2+θ(x1x2)
线段:
θ ∈ R ,    θ ∈ [ 0 , 1 ] \theta \in R ,\; \theta \in [0,1] θR,θ[0,1]
y = θ x 1 + ( 1 − θ ) x 2 y=\theta x_1 + (1-\theta)x_2 y=θx1+(1θ)x2
在这里插入图片描述
仿射集:一个集合C是仿射集,若 ∀ x 1 , x 2 ∈ C \forall x_1,x_2 \in C x1,x2C, x 1 x_1 x1 x 2 x_2 x2的直线也在集合内。
直线是仿射集,但线段不是。
整个二维空间是一个仿射集,二维空间当中的一个正方形不是仿射集。

仿射组合

复杂化的定义:
x 1 . . . x n ∈ C , θ 1 , . . . θ k ∈ R , θ 1 + . . . + θ k = 1 x_1...x_n \in C,\quad \theta_1,...\theta_k \in R, \quad \theta_1+...+\theta_k=1 x1...xnC,θ1,...θkR,θ1+...+θk=1
仿射组合为: θ 1 x 1 + . . . + θ k x k \theta_1x_1+...+\theta_kx_k θ1x1+...+θkxk

θ 1 x 1 + . . . + θ k x k ∈ C \theta_1x_1+...+\theta_kx_k \in C θ1x1+...+θkxkC

有仿射集 C C C x 1 , x 2 , x 3 ∈ C θ 1 , θ 2 , θ 3 ∈ R , θ 1 + θ 2 + θ 3 = 1 x_1,x_2,x_3 \in C \quad \theta_1,\theta_2,\theta_3 \in R,\quad \theta_1+\theta_2+\theta_3=1 x1,x2,x3Cθ1,θ2,θ3R,θ1+θ2+θ3=1
已知:
θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ∈ C \frac{\theta_1}{\theta_1+\theta_2}x_1 + \frac{\theta_2}{\theta_1+\theta_2}x_2 \in C θ1+θ2θ1x1+θ1+θ2θ2x2C

( θ 1 + θ 2 ) ( θ 1 θ 1 + θ 2 x 1 + θ 2 θ 1 + θ 2 x 2 ) + ( 1 − θ 1 − θ 2 ) x 3 ∈ C (\theta_1+\theta_2)\left( \frac{\theta_1}{\theta_1+\theta_2}x_1 + \frac{\theta_2}{\theta_1+\theta_2}x_2 \right) + (1-\theta_1-\theta_2)x_3 \in C (θ1+θ2)(θ1+θ2θ1x1+θ1+θ2θ2x2)+(1θ1θ2)x3C
所以:
θ 1 x 1 + θ 2 x 2 + θ 3 x 3 = 1 θ 3 = 1 − θ 1 − θ 2 \theta_1x_1 + \theta_2x_2 + \theta_3x_3 = 1\quad \theta_3 = 1-\theta_1-\theta_2 θ1x1+θ2x2+θ3x3=1θ3=1θ1θ2

仿射集的性质

x 1 , x 2 ∈ C x_1,x_2 \in C x1,x2C, C C C是仿射集,那么 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1 + (1-\theta)x_2 \in C θx1+(1θ)x2C
有一类C
α x 1 + β x 2 ∈ C α , β ∈ R \alpha x_1 + \beta x_2 \in C\quad \alpha,\beta \in R αx1+βx2Cα,βR
在这里插入图片描述
V = C − x 0 = { x − x 0 ∣ x ∈ C } ∀ x 0 ∈ C V=C-x_0=\lbrace x-x_0 | x \in C \rbrace \quad \forall x_0 \in C V=Cx0={xx0xC}x0C
V V V C C C相关的子空间

∀ v 1 , v 2 ∈ R ∀ α , β ∈ R ⇒ α v 1 + β v 2 ∈ V \forall v_1,v_2 \in R \quad \forall \alpha,\beta \in R \Rightarrow \alpha v_1 + \beta v_2 \in V v1,v2Rα,βRαv1+βv2V

α ( v 1 + x 0 ) + β ( v 2 + x 0 ) + ( 1 − α − β ) x 0 ∈ C \alpha(v_1+x_0)+\beta(v_2+x_0)+(1-\alpha-\beta)x_0 \in C α(v1+x0)+β(v2+x0)+(1αβ)x0C
⇒ α v 1 + β v 2 + x 0 ∈ C \Rightarrow \alpha v_1 + \beta v_2 + x_0 \in C αv1+βv2+x0C
⇒ α v 1 + β v 2 ∈ V \Rightarrow \alpha v_1 + \beta v_2 \in V αv1+βv2V

线性方程组的解集是仿射集

C = { x ∣ A x = b } A ∈ R m ∗ n b ∈ R m x ∈ R n C=\lbrace x| Ax=b \rbrace\quad A \in R^{m*n} \quad b\in R^m \quad x\in R^n C={xAx=b}ARmnbRmxRn
证:
∀ x 1 , x 2 ∈ C A x 1 = b A x 2 = b \forall x_1,x_2 \in C \quad Ax_1=b \quad Ax_2 = b x1,x2CAx1=bAx2=b
θ ∈ R \theta \in R \quad θR θ x 1 + ( 1 − θ ) x 2 ∈ ? C \theta x_1+(1-\theta)x_2 \in^{?} C θx1+(1θ)x2?C
A ( θ x 1 + ( 1 − θ ) x 2 ) ∈ ? b A(\theta x_1+(1-\theta)x_2) \in^? b A(θx1+(1θ)x2)?b
= θ A x 1 + ( 1 − θ ) A x 2 =\theta A x_1 + (1-\theta)Ax_2 =θAx1+(1θ)Ax2
= b =b =b

与之相关的子空间
V = { x − x 0 ∣ x ∈ C } ∀ x 0 ∈ C V= \lbrace x-x_0 | x \in C \rbrace \forall x_0 \in C V={xx0xC}x0C
= { x − x 0 ∣ A x = b } , A x 0 = b \quad= \lbrace x-x_0 | Ax = b \rbrace ,Ax_0 = b ={xx0Ax=b},Ax0=b
= { x − x 0 ∣ A ( x − x 0 ) = 0 } \quad=\lbrace x-x_0 | A(x-x_0) = 0 \rbrace ={xx0A(xx0)=0}
= { y ∣ A y = 0 } \quad=\lbrace y | Ay = 0 \rbrace ={yAy=0}

y y y A A A的零空间

V = { y ∣ A y = 0 } V= \lbrace y | Ay = 0 \rbrace V={yAy=0} 相比 C = { x ∣ A x = b } C=\lbrace x| Ax=b \rbrace C={xAx=b} 相当于做了一个平移。

反过来:
任何一个仿射集,都能写成一个线性方差组的解集。

仿射包

任何集合 C C C(不一定是仿射集),构造尽可能小的仿射集。
仿射包
a f f C = { θ x 1 + . . . + θ k x k ∣ ∀ x 1 . . . x k ∈ C , ∀ θ 1 + . . . + θ k = 1 } aff C=\lbrace \theta x_1 + ... + \theta_k x_k | \forall x_1...x_k \in C,\forall \theta_1 +...+\theta_k = 1 \rbrace affC={θx1+...+θkxkx1...xkC,θ1+...+θk=1}

如果 C C C本身就是一个仿射集,那么 C C C的仿射包就是它本身。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值