规划的难点在于凸规划/非凸规划。
stephen Boyd
Chapter 2 Convex Sets
仿射集 Affine Sets
直线:
x
1
≠
x
2
∈
R
n
θ
∈
R
x_1 \not= x_2 \in R^n \quad \theta \in R
x1=x2∈Rnθ∈R
y
=
θ
x
1
+
(
1
−
θ
)
x
2
=
x
2
+
θ
(
x
1
−
x
2
)
y=\theta x_1 + (1-\theta)x_2 = x_2 + \theta(x_1-x_2)
y=θx1+(1−θ)x2=x2+θ(x1−x2)
线段:
θ
∈
R
,
θ
∈
[
0
,
1
]
\theta \in R ,\; \theta \in [0,1]
θ∈R,θ∈[0,1]
y
=
θ
x
1
+
(
1
−
θ
)
x
2
y=\theta x_1 + (1-\theta)x_2
y=θx1+(1−θ)x2
仿射集:一个集合C是仿射集,若
∀
x
1
,
x
2
∈
C
\forall x_1,x_2 \in C
∀x1,x2∈C,
x
1
x_1
x1与
x
2
x_2
x2的直线也在集合内。
直线是仿射集,但线段不是。
整个二维空间是一个仿射集,二维空间当中的一个正方形不是仿射集。
仿射组合
复杂化的定义:
设
x
1
.
.
.
x
n
∈
C
,
θ
1
,
.
.
.
θ
k
∈
R
,
θ
1
+
.
.
.
+
θ
k
=
1
x_1...x_n \in C,\quad \theta_1,...\theta_k \in R, \quad \theta_1+...+\theta_k=1
x1...xn∈C,θ1,...θk∈R,θ1+...+θk=1
仿射组合为:
θ
1
x
1
+
.
.
.
+
θ
k
x
k
\theta_1x_1+...+\theta_kx_k
θ1x1+...+θkxk
θ 1 x 1 + . . . + θ k x k ∈ C \theta_1x_1+...+\theta_kx_k \in C θ1x1+...+θkxk∈C
有仿射集
C
C
C,
x
1
,
x
2
,
x
3
∈
C
θ
1
,
θ
2
,
θ
3
∈
R
,
θ
1
+
θ
2
+
θ
3
=
1
x_1,x_2,x_3 \in C \quad \theta_1,\theta_2,\theta_3 \in R,\quad \theta_1+\theta_2+\theta_3=1
x1,x2,x3∈Cθ1,θ2,θ3∈R,θ1+θ2+θ3=1
已知:
θ
1
θ
1
+
θ
2
x
1
+
θ
2
θ
1
+
θ
2
x
2
∈
C
\frac{\theta_1}{\theta_1+\theta_2}x_1 + \frac{\theta_2}{\theta_1+\theta_2}x_2 \in C
θ1+θ2θ1x1+θ1+θ2θ2x2∈C
(
θ
1
+
θ
2
)
(
θ
1
θ
1
+
θ
2
x
1
+
θ
2
θ
1
+
θ
2
x
2
)
+
(
1
−
θ
1
−
θ
2
)
x
3
∈
C
(\theta_1+\theta_2)\left( \frac{\theta_1}{\theta_1+\theta_2}x_1 + \frac{\theta_2}{\theta_1+\theta_2}x_2 \right) + (1-\theta_1-\theta_2)x_3 \in C
(θ1+θ2)(θ1+θ2θ1x1+θ1+θ2θ2x2)+(1−θ1−θ2)x3∈C
所以:
θ
1
x
1
+
θ
2
x
2
+
θ
3
x
3
=
1
θ
3
=
1
−
θ
1
−
θ
2
\theta_1x_1 + \theta_2x_2 + \theta_3x_3 = 1\quad \theta_3 = 1-\theta_1-\theta_2
θ1x1+θ2x2+θ3x3=1θ3=1−θ1−θ2
仿射集的性质
x
1
,
x
2
∈
C
x_1,x_2 \in C
x1,x2∈C,
C
C
C是仿射集,那么
θ
x
1
+
(
1
−
θ
)
x
2
∈
C
\theta x_1 + (1-\theta)x_2 \in C
θx1+(1−θ)x2∈C
有一类C
α
x
1
+
β
x
2
∈
C
α
,
β
∈
R
\alpha x_1 + \beta x_2 \in C\quad \alpha,\beta \in R
αx1+βx2∈Cα,β∈R
V
=
C
−
x
0
=
{
x
−
x
0
∣
x
∈
C
}
∀
x
0
∈
C
V=C-x_0=\lbrace x-x_0 | x \in C \rbrace \quad \forall x_0 \in C
V=C−x0={x−x0∣x∈C}∀x0∈C
V
V
V与
C
C
C相关的子空间
证 ∀ v 1 , v 2 ∈ R ∀ α , β ∈ R ⇒ α v 1 + β v 2 ∈ V \forall v_1,v_2 \in R \quad \forall \alpha,\beta \in R \Rightarrow \alpha v_1 + \beta v_2 \in V ∀v1,v2∈R∀α,β∈R⇒αv1+βv2∈V
α
(
v
1
+
x
0
)
+
β
(
v
2
+
x
0
)
+
(
1
−
α
−
β
)
x
0
∈
C
\alpha(v_1+x_0)+\beta(v_2+x_0)+(1-\alpha-\beta)x_0 \in C
α(v1+x0)+β(v2+x0)+(1−α−β)x0∈C
⇒
α
v
1
+
β
v
2
+
x
0
∈
C
\Rightarrow \alpha v_1 + \beta v_2 + x_0 \in C
⇒αv1+βv2+x0∈C
⇒
α
v
1
+
β
v
2
∈
V
\Rightarrow \alpha v_1 + \beta v_2 \in V
⇒αv1+βv2∈V
线性方程组的解集是仿射集
C
=
{
x
∣
A
x
=
b
}
A
∈
R
m
∗
n
b
∈
R
m
x
∈
R
n
C=\lbrace x| Ax=b \rbrace\quad A \in R^{m*n} \quad b\in R^m \quad x\in R^n
C={x∣Ax=b}A∈Rm∗nb∈Rmx∈Rn
证:
∀
x
1
,
x
2
∈
C
A
x
1
=
b
A
x
2
=
b
\forall x_1,x_2 \in C \quad Ax_1=b \quad Ax_2 = b
∀x1,x2∈CAx1=bAx2=b
θ
∈
R
\theta \in R \quad
θ∈R
θ
x
1
+
(
1
−
θ
)
x
2
∈
?
C
\theta x_1+(1-\theta)x_2 \in^{?} C
θx1+(1−θ)x2∈?C
A
(
θ
x
1
+
(
1
−
θ
)
x
2
)
∈
?
b
A(\theta x_1+(1-\theta)x_2) \in^? b
A(θx1+(1−θ)x2)∈?b
=
θ
A
x
1
+
(
1
−
θ
)
A
x
2
=\theta A x_1 + (1-\theta)Ax_2
=θAx1+(1−θ)Ax2
=
b
=b
=b
与之相关的子空间
V
=
{
x
−
x
0
∣
x
∈
C
}
∀
x
0
∈
C
V= \lbrace x-x_0 | x \in C \rbrace \forall x_0 \in C
V={x−x0∣x∈C}∀x0∈C
=
{
x
−
x
0
∣
A
x
=
b
}
,
A
x
0
=
b
\quad= \lbrace x-x_0 | Ax = b \rbrace ,Ax_0 = b
={x−x0∣Ax=b},Ax0=b
=
{
x
−
x
0
∣
A
(
x
−
x
0
)
=
0
}
\quad=\lbrace x-x_0 | A(x-x_0) = 0 \rbrace
={x−x0∣A(x−x0)=0}
=
{
y
∣
A
y
=
0
}
\quad=\lbrace y | Ay = 0 \rbrace
={y∣Ay=0}
y y y是 A A A的零空间
V = { y ∣ A y = 0 } V= \lbrace y | Ay = 0 \rbrace V={y∣Ay=0} 相比 C = { x ∣ A x = b } C=\lbrace x| Ax=b \rbrace C={x∣Ax=b} 相当于做了一个平移。
反过来:
任何一个仿射集,都能写成一个线性方差组的解集。
仿射包
任何集合
C
C
C(不一定是仿射集),构造尽可能小的仿射集。
仿射包
a
f
f
C
=
{
θ
x
1
+
.
.
.
+
θ
k
x
k
∣
∀
x
1
.
.
.
x
k
∈
C
,
∀
θ
1
+
.
.
.
+
θ
k
=
1
}
aff C=\lbrace \theta x_1 + ... + \theta_k x_k | \forall x_1...x_k \in C,\forall \theta_1 +...+\theta_k = 1 \rbrace
affC={θx1+...+θkxk∣∀x1...xk∈C,∀θ1+...+θk=1}
如果 C C C本身就是一个仿射集,那么 C C C的仿射包就是它本身。