P10 凸函数的扩展

凸函数的定义

一个函数 f : R n ↦ R f: R^n \mapsto R f:RnR 为凸,等价于
d o m f dom f domf为凸集
且对所有的 x , y ∈ d o m f , 0 ≤ θ ≤ 1 x,y \in domf, 0 \leq \theta \leq 1 x,ydomf,0θ1 f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x + (1-\theta) y) \leq \theta f(x) + (1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)

凸函数的扩展

f : R n ↦ R f: R^n \mapsto R f:RnR 为凸 d o m    f = C ⊆ R n dom \; f = C \subseteq R^n domf=CRn

定义
f ^ = { f ( x ) ,   x ∈ d o m f + ∞ , x ∉ d o m f \hat{f} =\begin{cases} f(x), & \text { $x \in domf$} \\ + \infty , & \text{$x \notin domf$} \end{cases} f^={f(x),+, xdomfx/domf
f ^ : R n ↦ R d o m f ^ = R n \hat{f}: R^n \mapsto R \quad dom \hat{f}= R^n f^:RnRdomf^=Rn
在这里插入图片描述

示性函数是凸函数

突击 C ⊆ R n C \subseteq R^n CRn
f c ( x ) = { 无 定 义 ,   x ∉ C 0 , x ∈ C f_c(x) = \begin{cases} 无定义, & \text { $x \notin C$} \\ 0 , & \text{$x \in C$} \end{cases} fc(x)={,0, x/CxC
I c ( x ) = { + ∞ ,   x ∉ C 0 , x ∈ C I_c(x) = \begin{cases} + \infty, & \text { $x \notin C$} \\ 0 , & \text{$x \in C$} \end{cases} Ic(x)={+,0, x/CxC

f c ( x ) 、 I c ( x ) f_c(x)、I_c(x) fc(x)Ic(x) 都是凸函数 + ∞ / 2 = + ∞ +\infty/2=+\infty +/2=+

J c ( x ) = { 1 ,   x ∉ C 0 , x ∈ C J_c(x) = \begin{cases} 1, & \text { $x \notin C$} \\ 0 , & \text{$x \in C$} \end{cases} Jc(x)={1,0, x/CxC

J c ( x ) J_c(x) Jc(x) 不是凸函数也不是凹函数
在这里插入图片描述

一阶条件

f : R n ↦ R f: R^n \mapsto R f:RnR 可微,即梯度 ▽ f 在 d o m f 上 均 存 在 \triangledown f在domf上均存在 fdomf,则 f f f为凸等价于:
d o m f domf domf为凸
f ( y ) ≥ f ( x ) + ▽ f T ( x ) ( y − x ) ∀ x , y ∈ d o m f f(y)\geq f(x)+\triangledown f^T(x)(y-x) \quad \forall x,y \in domf f(y)f(x)+fT(x)(yx)x,ydomf
在这里插入图片描述

证明1:一阶条件(一维情况)
考虑一维情况 f : R ↦ R f: R \mapsto R f:RR 为凸,
等价于 d o m f dom f domf为凸集,且 f ( y ) ≥ f ( x ) + f ′ ( x ) ( y − x ) f(y) \geq f(x) + f'(x)(y-x) f(y)f(x)+f(x)(yx)
证: ⇒ \Rightarrow
f f f为凸, ∀ x , y ∈ d o m f \forall x,y \in domf x,ydomf 为凸
∀ t , 0 < t ≤ t , x + t ( y − x ) ∈ d o m f \forall t,0<t \leq t,x+t(y-x) \in domf t,0<tt,x+t(yx)domf

f ( x + t ( y − x ) ) ≤ ( 1 − t ) f ( x ) + t f ( y ) f(x+t(y-x)) \leq (1-t)f(x) + tf(y) f(x+t(yx))(1t)f(x)+tf(y)
t f ( y ) ≥ t f ( x ) + f ( x + ( y − x ) ) − f ( x ) tf(y) \geq tf(x) + f(x+(y-x)) - f(x) tf(y)tf(x)+f(x+(yx))f(x)
f ( y ) ≥ f ( x ) + f ( x + ( y − x ) ) − f ( x ) t f(y) \geq f(x) + \frac{ f(x+(y-x)) - f(x)}{t} f(y)f(x)+tf(x+(yx))f(x)
l i m t → 0 + lim_{t \rightarrow 0_+} limt0+
f ( y ) ≥ f ( x ) + f ′ ( x ) ( y − x ) f(y) \geq f(x) + f'(x)(y-x) f(y)f(x)+f(x)(yx)

证: ⇐ \Leftarrow
∀ x ≠ y \forall x \not= y x=y x , y ∈ d o m f x,y \in domf x,ydomf
0 ≤ θ ≤ 1 0 \leq \theta \leq 1 0θ1 构造 z = θ x + ( 1 − θ ) y ∈ d o m f z = \theta x +(1-\theta)y \in domf z=θx+(1θ)ydomf
f ( x ) ≥ f ( z ) + f ′ ( z ) ( x − z ) f(x) \geq f(z) + f'(z)(x-z) f(x)f(z)+f(z)(xz)
f ( y ) ≥ f ( z ) + f ′ ( z ) ( y − z ) f(y) \geq f(z)+ f'(z)(y-z) f(y)f(z)+f(z)(yz)

θ f ( x ) + ( 1 − θ ) f ( y ) ≥ f ( z ) + ( θ ( x − z ) + ( 1 − θ ) ( y − z ) ) f ′ ( z ) \theta f(x) + (1-\theta)f(y) \geq f(z) + (\theta(x-z)+(1-\theta)(y-z))f'(z) θf(x)+(1θ)f(y)f(z)+(θ(xz)+(1θ)(yz))f(z)
θ f ( x ) + ( 1 − θ ) f ( y ) ≥ f ( z ) + ( θ x + ( 1 − θ ) y − z ) f ′ ( z ) \theta f(x) + (1-\theta)f(y) \geq f(z) + (\theta x +(1-\theta)y -z)f'(z) θf(x)+(1θ)f(y)f(z)+(θx+(1θ)yz)f(z)
θ f ( x ) + ( 1 − θ ) f ( y ) ≥ f ( z ) \theta f(x) + (1-\theta)f(y) \geq f(z) θf(x)+(1θ)f(y)f(z)

证明2:一阶条件(高维情况)
证: ⇒ \Rightarrow
考虑一维情况 f : R ↦ R f: R \mapsto R f:RR 为凸, x , y ∈ d o m f x,y \in domf x,ydomf
g ( t ) = f ( t y + ( 1 − t ) x ) = f ( x + t ( y − x ) ) g(t)=f(ty+(1-t)x)=f(x+t(y-x)) g(t)=f(ty+(1t)x)=f(x+t(yx))

y − x y-x yx相当于定义二中的方向,所以 g ( t ) g(t) g(t)是凸函数, g ( t ) g(t) g(t)是一维函数
g ′ ( t ) = ▽ f T ( t y + ( 1 − t ) x ) ( y − x ) g'(t)=\triangledown f^T(ty+(1-t)x)(y-x) g(t)=fT(ty+(1t)x)(yx)
对于一维凸函数具有:
g ( t 1 ) ≥ g ( t 2 ) + g ′ ( t 2 ) ( t 1 − t 2 ) g(t_1) \geq g(t_2) + g'(t_2)(t_1-t_2) g(t1)g(t2)+g(t2)(t1t2)
t 1 = 1 t 2 = 0 t_1=1\quad t_2=0 t1=1t2=0
g ( 1 ) ≥ g ( 0 ) + g ′ ( 0 ) g(1) \geq g(0) + g'(0) g(1)g(0)+g(0)

所以:
f ( y ) ≥ f ( x ) + ▽ f T ( x ) ( y − x ) f(y) \geq f(x)+\triangledown f^T(x)(y-x) f(y)f(x)+fT(x)(yx)

证: ⇐ \Leftarrow
∀ x , y ∈ d o m f \forall x,y \in domf x,ydomf
t y + ( 1 − t ) x ∈ d o m f ty+(1-t)x \in domf ty+(1t)xdomf
t ^ y + ( 1 − t ^ ) x ∈ d o m f \hat{t}y + (1-\hat{t})x \in domf t^y+(1t^)xdomf

f ( t y + ( 1 − t ) x ) ≥ f ( t ^ y + ( 1 − t ^ ) x ) + ▽ f ( t ^ y + ( 1 − t ^ ) x ) ( t y + ( 1 − t ) x − t ^ y − ( 1 − t ^ ) x ) f(ty+(1-t)x) \geq f(\hat ty+(1- \hat t)x) + \triangledown f(\hat ty + (1-\hat t)x)(ty+(1-t)x-\hat ty - (1-\hat t)x) f(ty+(1t)x)f(t^y+(1t^)x)+f(t^y+(1t^)x)(ty+(1t)xt^y(1t^)x)
f ( t y + ( 1 − t ) x ) ≥ f ( t ^ y + ( 1 − t ^ ) x ) + ▽ f ( t ^ y + ( 1 − t ^ ) x ) ( ( y − x ) ( t − t ^ ) ) f(ty+(1-t)x) \geq f(\hat ty+(1- \hat t)x) + \triangledown f(\hat ty + (1-\hat t)x)((y-x)(t - \hat t)) f(ty+(1t)x)f(t^y+(1t^)x)+f(t^y+(1t^)x)((yx)(tt^))

定义:
g ( t ) = f ( t y + ( 1 − t ) x ) g(t) = f(ty+(1-t)x) g(t)=f(ty+(1t)x)
g ( t ^ ) = f ( t ^ y + ( 1 − t ^ ) x ) g(\hat t) = f(\hat ty+(1-\hat t)x) g(t^)=f(t^y+(1t^)x)

g ′ ( t ^ ) = ▽ f T ( t ^ y + ( 1 − t ^ ) x ) ( y − x ) g'(\hat t) = \triangledown f^T(\hat t y + (1- \hat t)x)(y-x) g(t^)=fT(t^y+(1t^)x)(yx)
g ( t ) ≥ g ( t ^ ) + g ′ ( t ^ ) ( t − t ^ ) g(t) \geq g(\hat t) + g'(\hat t)(t-\hat t) g(t)g(t^)+g(t^)(tt^)

利用推理一的后半部分,能得到 f ( x ) f(x) f(x)为凸。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值