Chapter 2 Convex Sets
凸集 Convex Set
一个集合 C C C是凸集,当任意两点之间的线段仍在C内。
C C C为凸集 ⇔ \Leftrightarrow ⇔ θ x 1 + ( 1 − θ ) x 2 ∈ C ∀ x 1 , x 2 ∈ C , ∀ θ ∈ [ 0 , 1 ] \theta x_1 + (1-\theta)x_2 \in C \quad \forall x_1,x_2 \in C, \forall \theta \in [0,1] θx1+(1−θ)x2∈C∀x1,x2∈C,∀θ∈[0,1]
仿射集一定是凸集。
复杂化的定义:
凸组合
设
x
1
.
.
.
x
n
∈
C
,
θ
1
,
.
.
.
θ
k
∈
R
,
θ
1
+
.
.
.
+
θ
k
=
1
θ
1
,
.
.
.
θ
k
∈
[
0
,
1
]
x_1...x_n \in C,\quad \theta_1,...\theta_k \in R, \quad \theta_1+...+\theta_k=1 \quad \theta_1,...\theta_k \in [0,1]
x1...xn∈C,θ1,...θk∈R,θ1+...+θk=1θ1,...θk∈[0,1]
凸组合为:
θ
1
x
1
+
.
.
.
+
θ
k
x
k
\theta_1x_1+...+\theta_kx_k
θ1x1+...+θkxk
θ 1 x 1 + . . . + θ k x k ∈ C \theta_1x_1+...+\theta_kx_k \in C θ1x1+...+θkxk∈C
凸包
任意
C
∈
R
n
C \in R^n
C∈Rn
C
o
n
v
C
=
{
θ
1
x
1
+
.
.
.
+
θ
k
x
k
∣
∀
x
1
.
.
.
x
n
∈
C
,
∀
θ
1
,
.
.
.
θ
k
∈
[
0
,
1
]
,
θ
1
+
.
.
.
+
θ
k
=
1
}
Conv C = \lbrace \theta_1x_1+...+\theta_kx_k | \forall x_1...x_n \in C,\quad \forall \theta_1,...\theta_k \in [0,1], \quad \theta_1+...+\theta_k=1 \rbrace
ConvC={θ1x1+...+θkxk∣∀x1...xn∈C,∀θ1,...θk∈[0,1],θ1+...+θk=1}
锥 Cone
C
C
C是锥
⇔
\Leftrightarrow
⇔
∀
x
∈
C
θ
≥
0
\forall x\in C\quad\theta \geq0
∀x∈Cθ≥0 有
θ
x
∈
C
\theta x \in C
θx∈C
三条射线所组成的集合是锥。
凸锥 Convex Cone
C
C
C是凸锥
⇔
\Leftrightarrow
⇔
∀
x
1
,
x
2
∈
C
θ
1
,
θ
2
≥
0
\forall x_1,x_2\in C\quad \theta_1,\theta_2 \geq0
∀x1,x2∈Cθ1,θ2≥0 有
θ
1
x
1
+
θ
2
x
2
∈
C
\theta_1 x_1+ \theta_2 x_2 \in C
θ1x1+θ2x2∈C
既是锥也是凸锥。
凸锥一定要过原点。
凸锥组合
θ 1 x 1 + . . . + θ k x k θ 1 . . . θ k ≥ 0 \theta_1x_1+...+\theta_kx_k \quad \theta_1 ...\theta_k \geq 0 θ1x1+...+θkxkθ1...θk≥0
凸锥包
包含集合
C
C
C最小的凸锥。
x
1
,
.
.
x
k
∈
C
{
θ
1
x
1
+
.
.
.
+
θ
k
x
k
∣
x
1
.
.
.
x
k
∈
C
,
θ
1
.
.
.
θ
k
≥
0
}
x_1,..x_k \in C\quad \lbrace \theta_1x_1+...+\theta_kx_k | x_1...x_k \in C, \theta_1 ...\theta_k \geq 0 \rbrace
x1,..xk∈C{θ1x1+...+θkxk∣x1...xk∈C,θ1...θk≥0}
总结
仿射组合:
∀
θ
1
.
.
.
θ
k
θ
1
+
.
.
.
+
θ
k
=
1
\forall \theta_1...\theta_k \quad \theta_1+...+\theta_k=1
∀θ1...θkθ1+...+θk=1
公式1
\quad\quad\quad\quad\quad\quad\quad\quad\text{公式1}
公式1
凸组合
      
\;\;\;
:
∀
θ
1
.
.
.
θ
k
θ
1
+
.
.
.
+
θ
k
=
1
θ
1
.
.
.
θ
k
∈
[
0
,
1
]
\forall \theta_1...\theta_k \quad \theta_1+...+\theta_k=1 \quad \theta_1...\theta_k \in [0,1]
∀θ1...θkθ1+...+θk=1θ1...θk∈[0,1]
公式2
\quad\text{公式2}
公式2
凸锥组合:
∀
θ
1
.
.
.
θ
k
θ
1
+
.
.
.
+
θ
k
≥
0
\forall \theta_1...\theta_k \quad \theta_1+...+\theta_k \geq 0
∀θ1...θkθ1+...+θk≥0
公式3
\quad\quad\quad\quad\quad\quad\quad\quad\text{公式3}
公式3
仿射是凸的,满足公式1一定满足公式2。仿射组合是凸组合的一个特例
凸锥是凸的,满足公式3一定满足公式2。
C
=
{
x
}
C=\lbrace x \rbrace
C={x} 只有一个点
θ
1
x
+
θ
2
x
=
x
\theta_1 x + \theta_2 x = x
θ1x+θ2x=x
所以
C
C
C是一个仿射集
同理
C
C
C是一个凸集
如果
x
x
x是一个原点,那么
C
C
C是一个凸锥
C
=
ϕ
C=\phi
C=ϕ 空集
仿射集、凸集、凸锥都不存在
C
C
C是一个仿射集
C
C
C是一个凸集
C
C
C是一个凸锥