P4 凸集/凸锥

Chapter 2 Convex Sets

凸集 Convex Set

一个集合 C C C是凸集,当任意两点之间的线段仍在C内。

C C C为凸集 ⇔ \Leftrightarrow θ x 1 + ( 1 − θ ) x 2 ∈ C ∀ x 1 , x 2 ∈ C , ∀ θ ∈ [ 0 , 1 ] \theta x_1 + (1-\theta)x_2 \in C \quad \forall x_1,x_2 \in C, \forall \theta \in [0,1] θx1+(1θ)x2Cx1,x2C,θ[0,1]

仿射集一定是凸集。

复杂化的定义:

凸组合

x 1 . . . x n ∈ C , θ 1 , . . . θ k ∈ R , θ 1 + . . . + θ k = 1 θ 1 , . . . θ k ∈ [ 0 , 1 ] x_1...x_n \in C,\quad \theta_1,...\theta_k \in R, \quad \theta_1+...+\theta_k=1 \quad \theta_1,...\theta_k \in [0,1] x1...xnC,θ1,...θkR,θ1+...+θk=1θ1,...θk[0,1]
凸组合为: θ 1 x 1 + . . . + θ k x k \theta_1x_1+...+\theta_kx_k θ1x1+...+θkxk

θ 1 x 1 + . . . + θ k x k ∈ C \theta_1x_1+...+\theta_kx_k \in C θ1x1+...+θkxkC

凸包

任意 C ∈ R n C \in R^n CRn
C o n v C = { θ 1 x 1 + . . . + θ k x k ∣ ∀ x 1 . . . x n ∈ C , ∀ θ 1 , . . . θ k ∈ [ 0 , 1 ] , θ 1 + . . . + θ k = 1 } Conv C = \lbrace \theta_1x_1+...+\theta_kx_k | \forall x_1...x_n \in C,\quad \forall \theta_1,...\theta_k \in [0,1], \quad \theta_1+...+\theta_k=1 \rbrace ConvC={θ1x1+...+θkxkx1...xnC,θ1,...θk[0,1],θ1+...+θk=1}

锥 Cone

C C C是锥 ⇔ \Leftrightarrow ∀ x ∈ C θ ≥ 0 \forall x\in C\quad\theta \geq0 xCθ0 θ x ∈ C \theta x \in C θxC
在这里插入图片描述
三条射线所组成的集合是锥。

凸锥 Convex Cone

C C C是凸锥 ⇔ \Leftrightarrow ∀ x 1 , x 2 ∈ C θ 1 , θ 2 ≥ 0 \forall x_1,x_2\in C\quad \theta_1,\theta_2 \geq0 x1,x2Cθ1,θ20 θ 1 x 1 + θ 2 x 2 ∈ C \theta_1 x_1+ \theta_2 x_2 \in C θ1x1+θ2x2C
在这里插入图片描述
既是锥也是凸锥。
凸锥一定要过原点。

凸锥组合

θ 1 x 1 + . . . + θ k x k θ 1 . . . θ k ≥ 0 \theta_1x_1+...+\theta_kx_k \quad \theta_1 ...\theta_k \geq 0 θ1x1+...+θkxkθ1...θk0

凸锥包

包含集合 C C C最小的凸锥。
x 1 , . . x k ∈ C { θ 1 x 1 + . . . + θ k x k ∣ x 1 . . . x k ∈ C , θ 1 . . . θ k ≥ 0 } x_1,..x_k \in C\quad \lbrace \theta_1x_1+...+\theta_kx_k | x_1...x_k \in C, \theta_1 ...\theta_k \geq 0 \rbrace x1,..xkC{θ1x1+...+θkxkx1...xkC,θ1...θk0}

在这里插入图片描述

总结

仿射组合: ∀ θ 1 . . . θ k θ 1 + . . . + θ k = 1 \forall \theta_1...\theta_k \quad \theta_1+...+\theta_k=1 θ1...θkθ1+...+θk=1 公式1 \quad\quad\quad\quad\quad\quad\quad\quad\text{公式1} 公式1
凸组合        \;\;\; ∀ θ 1 . . . θ k θ 1 + . . . + θ k = 1 θ 1 . . . θ k ∈ [ 0 , 1 ] \forall \theta_1...\theta_k \quad \theta_1+...+\theta_k=1 \quad \theta_1...\theta_k \in [0,1] θ1...θkθ1+...+θk=1θ1...θk[0,1] 公式2 \quad\text{公式2} 公式2
凸锥组合: ∀ θ 1 . . . θ k θ 1 + . . . + θ k ≥ 0 \forall \theta_1...\theta_k \quad \theta_1+...+\theta_k \geq 0 θ1...θkθ1+...+θk0 公式3 \quad\quad\quad\quad\quad\quad\quad\quad\text{公式3} 公式3

仿射是凸的,满足公式1一定满足公式2。仿射组合是凸组合的一个特例
凸锥是凸的,满足公式3一定满足公式2。

C = { x } C=\lbrace x \rbrace C={x} 只有一个点
θ 1 x + θ 2 x = x \theta_1 x + \theta_2 x = x θ1x+θ2x=x
所以 C C C是一个仿射集
同理 C C C是一个凸集
如果 x x x是一个原点,那么 C C C是一个凸锥

C = ϕ C=\phi C=ϕ 空集
仿射集、凸集、凸锥都不存在
C C C是一个仿射集
C C C是一个凸集
C C C是一个凸锥

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值