数据的未来在于Transformer 模型与大数据转换
去年大模型爆发式增长,引发全球热潮,让人工智能似乎成为解决所有问题的良方。今年,随着热潮的消退,大模型进入更深层次的阶段,旨在重塑各行各业的底层逻辑。在大数据处理领域,大模型与传统ETL(Extract、Transform、Load)流程的碰撞引发了新的争论。大模型依赖“Transformers”,ETL依赖“Transformer”,相似的名字代表着截然不同的范式。有声音大胆预测:*“未来ETL将被彻底取代,大模型可以处理所有数据!”*这是否意味着数据处理领域数十年历史的ETL框架将要终结?还是仅仅被误解的预言?这场冲突背后是对技术未来的更深思考。
大数据处理(ETL)会消失吗?
随着大型模型的快速发展,一些人开始猜测传统的大数据处理方法(包括 ETL)是否仍然有必要。大型模型能够自主学习规则并从海量数据集中发现模式,这无疑令人印象深刻。然而,我的答案很明确:**ETL 不会消失。**大型模型仍然无法解决几个核心数据挑战:
1.效率问题
尽管大型模型在特定任务上表现优异,但计算成本极高,训练一个大规模的 Transformer 模型可能需要数周时间,耗费大量能源和财力。而 ETL 依靠预定义的规则和逻辑,效率高、资源占用少,擅长处理结构化数据。
对于日常的企业数据任务,许多操作仍然由规则驱动,例如:
- 数据清理:使用明确的规则或正则表达式消除异常。
- 格式转换:标准化格式,以方便跨系统的数据传输和集成。
- 聚合和统计:每日、每周或每月对数据进行分类、聚合和计算。
ETL 工具可以快速处理这些任务,而不需要大型模型的复杂推理能力。
2.自然语言中的歧义
大型模型在自然语言处理 (NLP) 方面表现出色,但也暴露出固有的挑战——人类语言中的歧义和模糊性。例如:
- 单个输入查询可能会根据上下文产生不同的解释,但无法保证准确性。
- 数据质量的差异可能导致模型产生与实际要求不一致的结果。
相比之下,ETL 是确定性的,根据预定义规则处理数据以产生可预测的标准化输出。ETL 的可靠性和精确性在金融和医疗保健等高需求行业仍然是关键优势。
3.对结构化数据的适应性强
大型模型擅长从非结构化数据(例如文本、图像、视频)中提取见解,但它们通常在处理结构化数据任务时会遇到困难。例如:
- 传统的 ETL 可以有效地处理关系数据库,处理 JOIN 和 GROUP BY 等复杂操作。
- 大型模型需要在处理之前将数据转换为特定格式,从而引入冗余和延迟。
在以结构化数据(例如表格、JSON)为主的场景中,ETL 仍然是最佳选择。
4.可解释性和合规性
大型模型通常被称为“黑匣子”。即使数据处理完成,其内部运作和决策机制仍然不透明:
- 无法解释的结果:在金融和医疗保健等受监管的行业中,大型模型的预测可能由于缺乏透明度而无法使用。
- 合规性挑战:许多行业需要对数据流和处理逻辑进行全面审计。大型模型具有复杂的数据管道和决策机制,带来了巨大的审计挑战。
相比之下,ETL 提供了高度透明的流程,每个数据处理步骤都有记录并可审计,确保符合公司和行业标准。
5.数据质量和输入标准化
大型模型对数据质量高度敏感。噪声、异常或非标准化输入会严重影响其性能:
- 数据噪声:大型模型无法自动识别错误数据,可能会将其用作“学习材料”并产生有偏见的预测。
- 缺乏标准化:将未清理的原始数据输入大型模型可能会导致不一致和缺失值,需要使用 ETL 等预处理工具。
ETL 确保数据在输入大型模型之前得到清理、重复数据删除和标准化,从而保持数据的高质量。
尽管大模型在很多领域都有着卓越的表现,但其复杂性、对高质量数据的依赖、硬件要求以及实际操作的限制决定了其无法完全取代 ETL。ETL 作为一种确定性、高效性和透明性的工具,仍将与大模型共存,为数据处理提供双重保障。
CPU 与 GPU:与 ETL 和大型模型的并行
虽然 ETL 无法被取代,但大型模型在数据处理中的兴起是不可避免的趋势。几十年来,计算系统都是以 CPU 为中心的,其他组件被视为外围设备。GPU 主要用于游戏,但如今,**数据处理依赖于 CPU 和 GPU(或 NPU)的协同作用。**这种范式转变反映了更广泛的变化,反映在英特尔和 NVIDIA 的股票趋势中。
从单中心到多中心计算
从历史上看,数据处理架构从**“以CPU为中心”演变为“CPU+GPU(甚至NPU)协同”,**这种由计算性能需求变化驱动的转变深深影响了数据处理工具的选择。
在以 CPU 为中心的时代,早期的 ETL 流程严重依赖 CPU 逻辑来完成数据清理、格式化、聚合等操作,这些任务非常适合 CPU 的顺序处理能力。
然而,复杂数据格式(音频、视频、文本)的兴起和存储的指数级增长暴露了 CPU 能力的局限性。GPU 凭借其无与伦比的并行处理能力,已成为训练大型 Transformer 模型等数据密集型任务的中心。
从传统 ETL 到大型模型
传统的 ETL 流程针对“以 CPU 为中心”的计算进行了优化,擅长处理基于规则的结构化数据任务。示例包括:
- 数据验证和清理。
- 格式标准化。
- 汇总和报告。
相比之下,大型模型需要 GPU 能力进行高维矩阵计算和大规模参数优化:
- 预处理:实时规范化和数据分割。
- 模型训练:涉及浮点运算的计算密集型任务。
- 推理服务:优化批处理,实现低延迟和高吞吐量。
这反映了从逻辑计算到神经推理的转变,扩大了数据处理范围,包括推理和知识提取。
面向大型模型的新一代 ETL 架构
大型模型的兴起凸显了传统数据处理的低效率,需要更先进、统一的架构。
当前数据处理的痛点:
- 复杂、分散的过程:数据清理、注释和预处理仍然高度手动且孤立。
- 可重用性低:团队经常重新创建数据管道,导致效率低下。
- 质量不一致:缺乏标准化工具导致数据质量参差不齐。
- 成本高:每个团队单独开发和维护会增加成本。
解决方案:AI增强型ETL工具
未来的 ETL 工具将嵌入 AI 功能,将传统优势与现代智能相结合:
- 嵌入生成:内置对文本、图像和音频矢量化的支持。
- LLM 知识提取:非结构化数据的自动结构化。
- 动态清理规则:数据清理策略的上下文感知优化。
- 非结构化数据处理:支持关键帧提取、OCR 和语音转文本。
- 自动增强:智能数据生成和增强。
终极趋势:Transformers + Transform
随着技术的不断进步,大模型与传统ETL流程正在逐渐融合,下一代ETL架构有望将大模型的智能与ETL的高效性融合,打造出一套能够处理多种数据类型的综合框架。
硬件:数据处理单元的集成
数据处理的基础正在从以 CPU 为中心的系统转变为涉及 CPU 和 GPU 的协作方法:
- 用于基础任务的 CPU:CPU 擅长基本操作,例如初步数据清理、集成和基于规则的处理,例如提取、转换和加载结构化数据。
- 用于高级分析的 GPU:凭借强大的并行计算能力,GPU 可处理预处理数据的大型模型训练和推理任务。
这一趋势不仅体现在技术创新上,也体现在产业动态上:英特尔正推进AI加速器,实现CPU-AI协同;英伟达则将GPU应用拓展到传统ETL场景,CPU与GPU的协同将为下一代数据处理带来更高的效率和智能支持。
软件:数据处理架构的集成
随着 ETL 和大型模型功能变得越来越紧密地交织在一起,数据处理正在发展成为一个多功能、协作的平台,其中ETL 充当大型模型的数据准备工具。
大型模型在训练过程中需要高质量的输入数据,ETL 提供初步处理以创造理想条件:
- 去噪和清理:消除噪声数据以提高数据集质量。
- 格式化和标准化:将多种数据格式转换为适合大型模型的统一结构。
- 数据增强:通过预处理和基于规则的增强来扩大数据规模和多样性。
人工智能增强型 ETL 架构的出现
ETL 工具的未来在于嵌入 AI 功能以实现更智能的数据处理:
- 嵌入功能
- 集成用于生成嵌入的模块以支持基于矢量的数据处理。
- 为文本、图像和音频生成高维表示;在下游任务中使用预先训练的模型进行语义嵌入。
- 直接在 ETL 工作流中执行嵌入计算,减少对外部推理服务的依赖。
- LLM 知识提取
- 利用大型语言模型 (LLM) 有效处理非结构化数据,提取实体和事件等结构化信息。
- 完成和推断复杂领域,例如填补缺失值或预测未来趋势。
- 在数据集成过程中实现多语言数据翻译和语义对齐。
- 非结构化数据识别与关键帧提取
- 原生支持视频、图像和音频数据,实现注释或训练数据集的自动关键帧提取。
- 从图像中提取特征(例如,对象检测、OCR)并执行音频到文本的转换、情感分析等。
- 动态清理规则
- 根据数据环境动态调整清理和增强策略,以提高效率和相关性。
- 实时检测异常并生成自适应清理规则。
- 优化特定领域(例如金融、医疗保健)的清理策略。
- 自动数据增强和生成
- 通过人工智能模型动态增强数据集(例如同义词替换、数据回译、对抗性样本生成)。
- 扩展低样本场景的数据集,并实现跨语言或跨域的数据生成。
AI增强型ETL是对传统ETL的变革性飞跃,提供嵌入生成、基于LLM的知识提取、非结构化数据处理和动态规则生成,从而显著提高数据处理的效率、灵活性和智能化。
案例研究:Apache SeaTunnel – 新一代 AI 增强型 ETL 架构
例如,开源Apache SeaTunnel项目通过支持创新的数据格式和高级处理功能打破了传统 ETL 的限制,展示了数据处理的未来:
- 对非结构化数据的原生支持:SeaTunnel 引擎支持文本、视频和音频处理,满足多样化的模型训练需求。
- 矢量化数据支持:实现与深度学习和大模型推理任务的无缝兼容。
- 嵌入大型模型特征:SeaTunnel v2.3.8 支持嵌入生成和 LLM 转换,将传统 ETL 与 AI 推理工作流程连接起来。
- “任意到任意”转换:将数据从任何来源(例如数据库、binlog、PDF、SaaS、视频)转换为任何目标格式,提供无与伦比的多功能性。
SeaTunnel等工具说明了现代数据处理如何发展成为AI+大数据全栈协作系统,并成为企业AI和数据战略的核心。
结论
大型模型转换器和大数据转换器不是竞争对手,而是盟友。数据处理的未来在于ETL 与大型模型的深度融合,如下所示:
- 协作数据处理单元:利用 CPU-GPU 协同作用进行结构化和非结构化数据处理。
- 动态数据处理架构:将AI能力嵌入到ETL中,实现嵌入生成、LLM知识提取、智能决策。
- 下一代工具:Apache SeaTunnel 等开源解决方案凸显了这一趋势,实现了“任意到任意”数据转换并重新定义 ETL 边界。
大模型与ETL的融合,将推动数据处理迈向智能化、标准化、开放化的新时代,并围绕企业需求驱动业务创新和智能决策,成为未来数据驱动企业的核心引擎。