先验分布/后验分布/似然估计/贝叶斯公式

转载于:https://blog.csdn.net/qq_23947237/article/details/78265026 

博主用一个例子生动形象的介绍了(先验分布/后验分布/似然估计/贝叶斯公式).

1、根据结果估计(猜)原因(交通方式)的概率分布即 后验概率:

         一般化公式:

                                 P(因|果)

2、根据历史规律确定原因 (交通方式)的概率分布即 先验概率

         一般化公式:

                                 P(因)

3、根据先定下来原因根据原因来估计结果的概率分布即 似然估计:

          一般化公式:

                                P(果|因)

4、贝叶斯公式:

我们熟知的贝叶斯公式是这样的: 
                        P(A|B)=P(B|A)∗P(A) / P(B)
  但在这里我们采用如下形式: 
                    P(θ|x)=P(x|θ)∗P(θ) / P(x)


                     后验概率=似然估计∗先验概率 / evidence


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值