一般来说,我们通过基于监督度量的方法和孪生神经网络学习图像表示,然后重用该网络的特征进行一次性学习,无需任何再训练。
目标是首先学习一个神经网络,可以区分图像对是否是来自同一个类别,这是图像识别的标准验证任务。我们假设在验证方面做得好的网络应该推广到一次分类。验证模型学习根据输入对属于同一类或不同类的概率来识别输入对。然后,该模型可用于评估新图像,每个新类恰好有一个新图像,以两两方式对测试图像进行评估。根据验证网络,得分最高的配对将获得完成一次性任务的最高概率。
20世纪90年代初,Bromley和LeCun首次引入了孪生网络,以解决作为图像匹配问题的签名验证问题。孪生神经网络由两个网络组成,它们接受不同的输入,但由顶部的能量函数连接。这个函数计算每边的最高级别特征表示之间的一些度量。孪生网络之间的参数是绑定的。权重绑定保证了两个非常相似的图像不可能通过各自的网络映射到特征空间中非常不同的位置,因为每个网络计算的函数是相同的。此外,该网络是对称的,因此每当我们向孪生网络呈现两张不同的图像时,顶层连接层将计算出相同的度量,就像我们向相反的孪生网络呈现相同的两张图像一样。
我们在上面描述了一个示例(图 4),它显示了我们考虑的模型的最大版本。该网络在验证任务上也为任何网络提供了最好的结果。
损失函数: