TEB算法基本原理
DWA、TEB、Trajectory Rollout是三种常用的局部路径规划算法。其中,TEB算法有很强的前瞻性,能够动态避障,表现较好,缺点是计算复杂——这也是其使用g2o算法优化计算量的原因。
TEB全称是Timed Elastic Band,译为时间橡皮筋。好比导航的起点和终点之间,拉了一条绷直的橡皮筋作为行走路线,如果路中间有障碍物,就会将橡皮筋撑开,影响行走时的路径。
就像这样:

当然,在实际情况中,机器人的行走路线会受到许多其他因素的影响,不会紧贴着障碍物表面。我们通常会将障碍物进行膨胀处理,让机器人的行走路线与真实的障碍物之间,保持一定的安全距离。
在TEB算法中,所有影响因素分为两类:约束和轨迹。
约束指的是速度和加速度的限制,这些往往由机器人本身决定;轨迹则指最短或最快的路径,或者与障碍物保持距离,又或者是与规划路径尽可能地跟随。
一般来说,TEB算法会通过参数的方式,调整各影响因素的权重,为每个影响因素设计奖励或者惩罚函数,然后对可行的路线进行打分,最后选择得分最高的局部路线下发速度指令。
这样规划出的路径,更符合小车的硬件结构以及运动学,能够让小车流畅地行驶和绕障,且行驶速度和到点时间都有着优秀表现。
但由于需考虑的参数较多,如何「合理地」配置参数,就成了最重要且最困难的一环。
如何为TEB算法配置参数?
典型的「障碍物和中间点参数配置」
通常来说,我们会希望为机器人规划出一条远离障碍物,又尽可能经过中间点的路线,让机器人的行走路线更合理。基于此,我们可以在TEB算法中,对障碍物和中间点分别配置参数,并运用到惩罚函数中。

TEB算法是一种局部路径规划方法,具有前瞻性和动态避障能力。它通过调整障碍物、速度、加速度等影响因素的权重来规划路径。参数配置包括障碍物距离、中间点权重等,以平衡避障和路径效率。同时,考虑机器人的速度和加速度限制以及运动学约束,确保路径的平滑性。g2o算法用于优化计算量,保证路径规划的实时性。
最低0.47元/天 解锁文章
2655

被折叠的 条评论
为什么被折叠?



