一、模型选择:从任务类型出发,选择最适合的模型
1、回归任务
从使用Numpy推导,到使用深度学习框架,一步步走进最简单的回归任务:当人工智能邂逅蓝桥杯算法题,会擦除怎样的火花?(链接:https://aistudio.baidu.com/aistudio/projectdetail/1693536?channelType=0&channel=0)
(1)实现原理
a.从最简单的神经网路开始
b.神经网络工作原理概述
c.使用多个输入进行预测
d.只用一个输入做出多个输出
e.基于多个输入得到多个输出
f.用预测结果进一步预测
(2)拟合斐波那契数列
a.问题描述:输入格式、输出格式
b.生成数据:输入数据、数据对应的标签、将数组转换成张量
c.构建线性回归模型
d.构建优化器和损失函数
e.模型训练
f.模型验证
(3)大等于n的最小完全平方数
a.问题描述:输入格式、输出格式
b.生成数据
c.构建线性回归模型
d.构建优化器和损失函数
e.模型训练
f.模型验证
小结:先用传统方法人脑解题,写出能算出结果的函数,然后根据这一函数生成训练数据,最后训练出线性回归模型。使用简单的线性变换层组建网络,使用少量数据进行拟合,模型输出能近似预期结果,但还有一定的差距,有很大的提升的空间,感兴趣的开发者可以基于本项目,尝试使用更多的数据、更复杂的网络等。
人脸关键点检测:基