第三课学习笔记 深度学习模型训练和关键参数调优详解

本文介绍了深度学习模型的选择,包括回归任务、分类任务和场景任务,并通过实例讲解模型训练的基本原理和超参数优化。同时,强调了效果展示的重要性,如输入输出可视化和使用VisualDL工具。
摘要由CSDN通过智能技术生成

一、模型选择:从任务类型出发,选择最适合的模型
1、回归任务
从使用Numpy推导,到使用深度学习框架,一步步走进最简单的回归任务:当人工智能邂逅蓝桥杯算法题,会擦除怎样的火花?(链接:https://aistudio.baidu.com/aistudio/projectdetail/1693536?channelType=0&channel=0)

(1)实现原理

a.从最简单的神经网路开始

b.神经网络工作原理概述

c.使用多个输入进行预测

d.只用一个输入做出多个输出

e.基于多个输入得到多个输出

f.用预测结果进一步预测

(2)拟合斐波那契数列

a.问题描述:输入格式、输出格式

b.生成数据:输入数据、数据对应的标签、将数组转换成张量

c.构建线性回归模型

d.构建优化器和损失函数

e.模型训练

f.模型验证

(3)大等于n的最小完全平方数

a.问题描述:输入格式、输出格式

b.生成数据

c.构建线性回归模型

d.构建优化器和损失函数

e.模型训练

f.模型验证

小结:先用传统方法人脑解题,写出能算出结果的函数,然后根据这一函数生成训练数据,最后训练出线性回归模型。使用简单的线性变换层组建网络,使用少量数据进行拟合,模型输出能近似预期结果,但还有一定的差距,有很大的提升的空间,感兴趣的开发者可以基于本项目,尝试使用更多的数据、更复杂的网络等。

人脸关键点检测:基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值