C++调用tensorflow训练好的SSD物体检测模型-opencv3.4.3

本文档介绍了如何使用OpenCV调用预训练的TensorFlow SSD模型进行物体检测,包括模型介绍、电脑配置、模型文件、源代码展示及实验结果。主要测试模型为ssd_mobilenet_v1_coco和ssd_inception_v2_coco,并提供了.pbtxt文件的获取和使用方法。
摘要由CSDN通过智能技术生成

本博文参考:https://blog.csdn.net/guyuealian/article/details/80570120

介绍

opencv真的是一个很强大的库,当深度学习开始逐渐成熟后,opencv也迅速把相对应的模块加入到其开源库中,现在opencv已经可以支持tensorflow、caffe和torch三种框架训练出来的模型。本篇博文主要介绍opencv调用训练好的tensorflow .pb模型。

电脑配置

GTX1060
I7-8700k
SSD

模型

主要测试两种模型,“ssd_mobilenet_v1_coco_11_06_2017”和“ssd_inception_v2_coco_2017_11_17”。下载地址:
ssd_mobilenet_v1_coco_11_06_2017
ssd_inception_v2_coco_2017_11_17

当然了,你可以自己训练模型,也可以下载更多的预训练模型,这个可以到TensoFlow下载,下载地址是:
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
在这里插入图片描述
Tensorflow模型的graph结构可以保存为.pb文件或者.pbtxt文件,或者.meta文件,其中只有.pbtxt文件是可读的。在OpenCV中,每个模型.pb文件,原则上应有一个对应的文本图形定义的.pbtxt文件,当然也可能没有,在opencv_extra\testdata\dnn有些.pbtxt文件是可以对应找到,这个要看opencv会不会提供,当然,这个.pbtxt是可以通过.pb文件生成的,关于如何生成的教程请见.pb到.pbtxt。这就允许我们可以把自己训练的模型通过opencv进行调用。

opencv_extra提供了一些已经做好的.pbtxt文件,下载链接请见

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值