本博文参考:https://blog.csdn.net/guyuealian/article/details/80570120
介绍
opencv真的是一个很强大的库,当深度学习开始逐渐成熟后,opencv也迅速把相对应的模块加入到其开源库中,现在opencv已经可以支持tensorflow、caffe和torch三种框架训练出来的模型。本篇博文主要介绍opencv调用训练好的tensorflow .pb模型。
电脑配置
GTX1060
I7-8700k
SSD
模型
主要测试两种模型,“ssd_mobilenet_v1_coco_11_06_2017”和“ssd_inception_v2_coco_2017_11_17”。下载地址:
ssd_mobilenet_v1_coco_11_06_2017
ssd_inception_v2_coco_2017_11_17
当然了,你可以自己训练模型,也可以下载更多的预训练模型,这个可以到TensoFlow下载,下载地址是:
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
Tensorflow模型的graph结构可以保存为.pb文件或者.pbtxt文件,或者.meta文件,其中只有.pbtxt文件是可读的。在OpenCV中,每个模型.pb文件,原则上应有一个对应的文本图形定义的.pbtxt文件,当然也可能没有,在opencv_extra\testdata\dnn有些.pbtxt文件是可以对应找到,这个要看opencv会不会提供,当然,这个.pbtxt是可以通过.pb文件生成的,关于如何生成的教程请见.pb到.pbtxt。这就允许我们可以把自己训练的模型通过opencv进行调用。
opencv_extra提供了一些已经做好的.pbtxt文件,下载链接请见