3D Bounding Box Estimation Using Deep Learning and Geometry

更多干货请关注公众号【3D视觉工坊】~

算法基本思想

在这里插入图片描述

3d box的长宽高回归

在这里插入图片描述

角度回归

在这里插入图片描述
注意:论文中的角度回归分支是对 c o s θ l cos{\theta_l} cosθl s i n θ l sin{\theta_l} sinθl来进行回归的。

类别判断

这里的类别判断就是简单的多分类。

2d box的回归

这个回归没有在文章图中体现出来,但是确实存在,后面的3d box计算也是要基于2d box的信息,2d box回归应该就是加在confidence判断这块。

3D box的计算

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这样就可以根据可能的几种3D-2D点对应关系(R已被预测出)求解3D到2D的变换矩阵,矩阵求解出来后,即是可以根据RT来求相机坐标系下的三维点,从而求出最终3d box的表达值。

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值