【论文阅读四】An Efficient Insect Pest Classification Using Multiple Convolutional Neural Network Based Mod

本文记录下今天看的一篇文章《An Efficient Insect Pest Classification Using Multiple Convolutional Neural Network Based Models》,本文是2021年发表在Applied Intelligence的文章,貌似是一篇二区。
文章梗概

本篇文章其实没有引入新的思想或者算法,文章使用数据量不同的大小的两个数据集【IP102和D0】,然后借助了retention attention networks,feature pyramid networks和multi-branch and multi-scale attention networks三种模型,并使用ResNet50作为基准模型,进行比较,最终使用多个模型的结果集成,然后得到了较好的结果,同时使用了Grad CAM可视化了不同模型的关注区域。

文章实验过程

文章划分好数据集后,分别使用ResNet50,RAN, FPN和MMAL-Net进行了实验,最终将四者的结果进行集成,得到最佳的实验结果。

文章结果以及可视化

在这里插入图片描述

在这里插入图片描述
通过可视化可以看出,MMAL-Net的细粒度识别能力较强,其关注的区域基本是较为细节的区域,验证了细粒度分类过程中,主要关注物体的局部特征,这也为后续相关的工作开展提供了辅助说明。
另外,此文章提供了代码链接,具体可看相关的代码实现。

### 回答1: 好的,以下是一个简单的Python代码定义昆虫类Insect: ```python class Insect: def __init__(self, name, wings, legs, color): self.name = name self.wings = wings self.legs = legs self.color = color def fly(self): print(f"{self.name} is flying with {self.wings} wings.") def crawl(self): print(f"{self.name} is crawling with {self.legs} legs.") def display_color(self): print(f"{self.name} is {self.color} in color.") ``` 这个类有个属性:名称(name)、翅膀数量(wings)、腿数量(legs)和颜色(color)。它还有三个方法:飞行(fly)、爬行(crawl)和展示颜色(display_color)。您可以根据需要进行更改或添加其他方法和属性。 ### 回答2: 昆虫是一类具有六条腿、触角和外骨骼的小型无脊椎动物。昆虫类Insect可以作为一个抽象的基类,用来表示各种各样的昆虫。该类可以具有以下属性和方法: 属性: 1. 名称(name):表示昆虫的名称。 2. 年龄(age):表示昆虫的年龄。 3. 颜色(color):表示昆虫的颜色。 方法: 1. 吃食物(eat):昆虫会通过这个方法来进食,可以传入食物类型作为参数。 2. 移动(move):昆虫会使用六条腿来进行移动,该方法可以模拟昆虫的移动行为。 3. 发出声音(makeSound):有些昆虫会通过发出声音来与其他昆虫沟通,此方法可以模拟昆虫发出声音的行为。 通过定义昆虫类Insect,我们可以派生出不同具体的昆虫类,如蜜蜂类、蝴蝶类、蚂蚁类等。每个具体的昆虫类可以继承Insect类的属性和方法,并且可以根据需要添加自己特有的属性和方法。 综上所述,通过定义昆虫类Insect,我们可以将各种昆虫进行归类并具有共同的属性和方法,使得我们可以更好地理解和研究昆虫的生态和行为。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值