泊松流(Poisson Flow)生成模型

又搬来了神器啊~~~ 

扩散模型最早来源于物理中的热力学,最近却在人工智能领域大放异彩。还有什么物理理论可以推动生成模型研究的发展呢?最近,来自 MIT 的研究者受到高维电磁理论的启发,提出了一种称作泊松流(Poisson Flow)的生成模型。理论上,这种模型具有直观的图像和严谨的理论;实验上,它在生成质量、生成速度和鲁棒性上往往比扩散模型更好。本文已被NeurIPS 2022接收。

论文地址:https://arxiv.org/abs/2209.11178  

代码地址:https://github.com/Newbeeer/Poisson_flow

受到静电力学的启发,研究人员提出了一种新的生成模型,名为泊松流模型 (Poisson Flow Generative Models, or PFGM)。直观上,该研究可以把 N 维的数据点看成在 N+1 维空间中新增维度 z=0 平面上的一群正电荷,它们产生了高维空间中的电场。从 z=0 平面开始沿着它们产生的电场线往外走,该研究能够把样本送到一个半球面上(如图一所示)。这些电场线的方向对应于高维空间中泊松方程 (Poisson Equation)的解的梯度。研究人员证明了当半球的半径足够大的时候,电场线能够把在 z=0 平面上的电荷分布(也就是数据分布)转换为一个在半球面上的均匀分布(图二)。

PFGM 利用了电场线的可逆性来生成 z=0 平面上的数据分布:首先研究人员在大的半球面上均匀采样,接着让样本沿着电场线

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值