深度学习的9种池化方法

对于池化操作,大部分人想到的可能就是Max_Pooling和Average_Pooling,但实际上卷积神经网络的池化方法还有很多,本文对业界目前所出现的一些池化方法进行了归纳总结。

卷积神经网络(Convolution Neural Network, CNN)因其强大的特征提取能力而被广泛地应用到计算机视觉的各个领域,其中卷积层和池化层是组成CNN的两个主要部件。理论上来说,网络可以在不对原始输入图像执行降采样的操作,通过堆叠多个的卷积层来构建深度神经网络,如此一来便可以在保留更多空间细节信息的同时提取到更具有判别力的抽象特征。然而,考虑到计算机的算力瓶颈,通常都会引入池化层,来进一步地降低网络整体的计算代价,这是引入池化层最根本的目的。

作用

池化层大大降低了网络模型参数和计算成本,也在一定程度上降低了网络过拟合的风险。概括来说,池化层主要有以下五点作用:

  • 增大网络感受野

  • 抑制噪声,降低信息冗余

  • 降低模型计算量,降低网络优化难度,防止网络过拟合

  • 使模型对输入图像中的特征位置变化更加鲁棒

对于池化操作,大部分人第一想到的可能就是Max_Pooling和Average_Pooling,但实际上卷积神经网络的池化方法还有很多,本文将对业界目前所出现的一些池化方法进行归纳总结:

池化大盘点

1. Max Pooling(最大池化)

定义

最大池化(Max Pooling)是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。其定义如下:

解说

对于最大池化操作,只选择每个矩形区域中的最大值进入下一层,而其他元素将不会进入下一层。所以最大池化提取特征图中响应最强烈的部分进入下一层,这种方式摒弃了网络中大量的冗余信息,使得网络更容易被优化。同时这种操作方式也常常丢失了一些特征图中的细节信息,所以最大池化更多保留些图像的纹理信息。

2. Average Pooling(平均池化)

定义

平均池化(Average Pooling)是将输入的图像划分为若干个矩形区域,对每个子区域输出所有元素的平均值。其定义如下:

解说

平均池化取每个矩形区域中的平均值,可以提取特征图中所有特征的信息进入下一层,而不像最大池化只保留值最大的特征,所以平均池化可以更多保留些图像的背景信息。

很抱歉,作为AI语言模型,我无法提供代码的可视化。我可以提供一些解释和示例代码,希望能帮助您理解点云最大池化的工作原理。 点云最大池化深度学习中常用的一种降采样操作,它可以将一个点云中的每个局部区域的点集缩减成一个代表该区域特征的中心点。 其中,最大池化的实现方式是找到每个局部区域中距离中心点最近的点,将其作为该区域的特征。这一过程可以使用KD树来实现,具体可以参考如下的示例代码: ```python import open3d as o3d import numpy as np # 生成一个示例点云 pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(np.random.randn(100, 3)) # 构建KD树 kd_tree = o3d.geometry.KDTreeFlann(pcd) # 定义池化半径和采样密度 radius = 0.1 num_points = 10 # 遍历每个点,进行最大池化 pooled_points = np.zeros((pcd.shape[0], 3)) for i in range(pcd.shape[0]): _, indices, _ = kd_tree.search_radius_vector_3d(pcd[i], radius) if len(indices) < num_points: continue sampled_points = pcd[indices[:num_points]] pooled_points[i] = np.max(sampled_points, axis=0) # 可视化池化结果 pooled_pcd = o3d.geometry.PointCloud() pooled_pcd.points = o3d.utility.Vector3dVector(pooled_points) o3d.visualization.draw_geometries([pooled_pcd]) ``` 以上代码中,我们首先生成了一个100个点的随机点云,然后利用open3d库中的KDTreeFlann类来构建KD树。在进行最大池化时,我们遍历了每个点,并将其作为中心点,利用KD树查找其相邻半径为0.1的点集,从中随机采样10个点,并取其最大值作为该中心点的特征向量。最后将所有中心点的特征向量构成新的点云并可视化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值