Retinexformer

本文介绍了在ICCV2023上提出的Retinexformer,一种结合了视网膜理论的Transformer算法,用于低光图像增强。该方法提出了一种单阶段框架ORF和光照引导的注意力机制IG-MSA,实现在十三个数据集上的优异性能,并展示了在夜间目标检测中的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为52CV粉丝cyh投稿,介绍了 ICCV 2023 上的新工作《Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement》。

[ICCV 2023] 清华ETH提出 Retinexformer 刷新十三大暗光增强榜单

论文链接:https://arxiv.org/abs/2303.06705

代码链接:https://github.com/caiyuanhao1998/Retinexformer图1 Retinexformer 和之前基于Retinex理论的算法对比

目前所有的代码、模型、训练日志、十三个数据集(LOL-v1, LOL-v2-real, LOL-v2-synthetic, SID, SMID, SDSD-in, SDSD-out, MIT Adobe FiveK, LIME, NPE, MEF, DICM, VV)的测试结果均已开源。我们基于 BasicSR 开发了一个集成了八大数据集的训练框架。欢迎大家来使用~

1. 暗光增强简介

如图1所示,暗光增强的主要任务是增强低光图像的能见度和对比度,同时修复隐藏在黑暗中或由于提升亮度而引入的噪声、伪影、颜色畸变等复杂的退化模式。图2 暗光增强任务示意图

当前的暗光增强算法大体上可以分为三类:朴素方法、传统感知方法、深度学习方法

朴素方法一般会直接在全局范围内增强整张图像的亮度和对比度。经典的算法有直方图均衡化(histogram equalization )和伽马矫正(Gama Correction)。然而这类算法没有考虑到光照因素,使得增强后的图像与真实光照图像严重不符。

传统感知算法大都基于视网膜理论(Retinex Theory),将一张自然图像解耦为照度图(Illumination)和反射图(Reflectance),并将反射图作为暗光增强后的图像。然而这类算法有两个缺陷。一是假定暗光图像都是干净的,不存在噪声伪影等。然而由于成像设备的缺陷,暗光图像常常带有噪声。二是这类算法依赖于手工设计的图像先验,常常需要调参且表征能力很弱。

现有的深度学习方法大多基于卷积神经网络,不擅长于捕获长程依赖关系,不利于图像的修复。有部分深度学习算法与视网膜分解理论相结合。然而这类算法大都需要一个冗长的流程,采取一个多阶段的训练方案,分别训练多个不同的 CNN 来做不同的任务,如解耦彩色图像、给反射图去噪、调整照度图等。然后将这些训好的 CNN 连接起来进行微调。整个训练过程繁琐复杂,费时费力。

为了解决上述难题,本文:

【1】我们提出了首个与视网膜理论相结合的 Transformer 算法,名为 Retinexformer,以用于暗光增强。

【2】我们推导了一个单阶段视网膜理论框架,名为 ORF(One-stage Retinex-based Framework),不需要繁复的训练和微调流程,只需要一个阶段端到端的训练即可。

【3】我们设计了一种由光照引导的新型多头自注意机制,名为 IG-MSA(Illumination-Guided Multi-head Self-Attention,IG-MSA),将光照信息作为关键线索来引导长程依赖关系的捕获。

【4】我们的算法在十三个暗光增强榜单上达到了更好的定量和定性效果,同时在用户研究和黑夜目标检测任务上验证了我们算法的实用价值。

本文方法图3 本文方法的整体框架

本文方法的整体框架如图3所示。在图3 (a) 中,Retinexformer 采用我们设计的 ORF。而 ORF 又由两部分构成:(i) 光照估计器(illumination estimator)和 (ii) 退化修复器(corruption restorer)。在图3 (b) 中,我们设计一个光照引导的 Transformer IGT(Illumination-Guided Transformer)来作为退化修复器。IGT 的基本单元是光照引导的注意力块 IGAB (Illumination-Guided Attention Block)。IGAB 由两个层归一化 LN(Layer Normalization),一个 IG-MSA 和一个前馈网络 FFN(Feed-Forward Network)组成,其细节如图3 (c) 所示。

2.1 单阶段视网膜理论框架

根据视网膜理论,一个低光图像 I 可以分解为一个反射图 R 和一个照度图 L 的点乘:2.2 光照引导的 Transformer

如图3 (a) (ii) 所示,IGT采用一个 encoder-bottleneck-decoder 的 U-型结构。其中最重要的组成部件便是 IG-MSA,光照估计器输出的增亮特征图输入到每一个 IG-MSA 当中。在 IG-MSA 当中,输入的特征图首先被变形为 token,然后被分成 k 个 heads:我们 IG-MSA 计算复杂度与输入尺寸成线性而全局MSA的计算复杂度与输入成二次相关。我们的计算复杂度明显更低。

3. 实验结果

我们在 LOL-v1, LOL-v2-real, LOL-v2-synthetic, SID, SMID, SDSD-in, SDSD-out, MIT Adobe FiveK 八个数据集上开展定量实验,实验结果如表1、2所示:表1表2

此处需要补充说明一下,MIT Adobe FiveK 官方只提供了RAW数据。需要大家自己导出才能得到 RGB 数据。导出有两种格式,一种是 pro RGB,这种格式不适于人的眼睛来看,但是计算得到的 PSNR 和 SSIM 指标都偏高,便于大家报指标。而另一种是 s RGB 格式,这种就是最常见的 RGB 图像格式,但是这种格式指标会比较低。本文采用的就是这种格式。我们在 repo 里贴心地为大家准备好了已经导出的 sRGB 图像下载链接,可以直接下载使用~  whaosoft aiot http://143ai.com

我们在 LOL-v1, LOL-v2-real, LOL-v2-synthetic, SID, SMID, SDSD-in, SDSD-out, MIT Adobe FiveK, LIME, NPE, MEF, DICM, VV 上测试了定性效果。视觉对比如图4、5、6、7所示另外我们还做了用户调查,结果如表3所示: 表3 用户调查结果

最后,将我们的 Retinexformer 作为预处理器对暗光图像进行增强以辅助夜间目标检测的效果,在 ExDark 数据集上的定量结果如表4所示:表4 暗光增强辅助夜间目标检测实验指标

一些暗光增强辅助夜间目标检测的例子如图8、9、10 所示:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值