用于逆向分子设计の引导扩散模型

以色列理工学院和威尼斯大学的研究团队提出GaUDI,一种结合了等变图神经网络和生成扩散模型的新型方法,用于逆向分子设计。GaUDI在多目标任务中表现出色,能生成具有最佳特性的分子,甚至超越现有数据集。研究发表在《NatureComputationalScience》上,对未来有机电子学和光电子学等领域有重要影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

「从头分子设计」是材料科学的「圣杯」。生成深度学习的引入极大地推进了这一方向,但分子发现仍然具有挑战性,而且往往效率低下。

以色列理工学院(Technion-Israel Institute of Technology)和意大利威尼斯大学(University Ca’ Foscari of Venice)的研究团队,提出一种用于逆向分子设计的引导扩散模型:GaUDI,它结合了用于属性预测的等变图神经网络和生成扩散模型。生成的分子几乎 100% 有效

研究人员通过将单目标和多目标任务应用于生成的 475,000 个多环芳香族系统数据集,证明了 GaUDI 在设计有机电子应用分子方面的有效性。GaUDI 展示了改进的条件设计,生成具有最佳特性的分子,甚至超越原始分布,提出了比数据集中的分子更好的分子。除了逐点目标之外,GaUDI 还可以引导至开放式目标(例如最小值或最大值),并且在所有情况下,生成的分子的有效性都接近 100%。

该研究以「Guided diffusion for inverse molecular design」为题,于 2023 年 10 月 5 日发布在《Nature Computational Science》上。

分子设计已有方法及其挑战

新技术的发展往往取决于获取新功能分子的能力。然而,分子发现对于化学家和材料科学家来说仍然是一个开放的挑战,因为很难准确地模拟分子和材料的性质。这通常会因满足多种需求而加剧,这些需求有时可能是矛盾的,甚至是相互排斥的,例如,需要催化剂既稳定又活跃。因此,关键是找到多种分子特性之间的最佳权衡,以便给定的分子可以提供所需的功能。

找到这个最佳点,首先需要确定分子

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值