内容预告
🚀 NVIDIA 再次升级显卡家族! 伴随着 GeForce RTX 5090、5080、5070 的发布,RTX 50 系列几乎覆盖了所有性能档位(除了 5060 还未亮相),从 20 系列到 50 系列,显卡性能迎来了巨大的飞跃。然而,新品发布的同时,也让人陷入选择困难症——
✅ AI 计算能力到底提升了多少?
✅ 功耗表现是否值得升级?
✅ 如何选择一款最适合自己的显卡?
本篇文章将带你快速掌握从 GTX 1060 到 RTX 5090 各代显卡的 AI 计算性能,并通过**TFLOPs/W(算力效率)**这一关键指标,帮你找出最具性价比的 GPU!
为爱发电,如果对你有帮助,请不吝点赞和关注**,谢谢 😁**
🔍 AI 计算能力:显卡选购的新标准?
在 AI 时代,显卡不仅仅是游戏玩家的必需品,更是深度学习、Stable Diffusion、ChatGLM 等本地 AI 模型运行的核心硬件。衡量显卡 AI 计算性能的指标有很多,TFLOPS(浮点运算每秒万亿次) 是其中最直观的之一——它代表显卡每秒钟可以进行多少次浮点计算,数值越高,理论性能越强。
但仅仅看 TFLOPS 还不够,我们还需要考虑算力效率(TFLOPs/W),也就是单位功耗下的计算能力。毕竟,一张高性能但功耗爆炸的显卡,并不一定是最好的选择。
📊 GeForce RTX AI 计算性能对比
显卡 | TFLOPS | 功耗 (W) | TFLOPs/W | 显存大小 |
---|---|---|---|---|
GeForce RTX 5090 | 104.883 | 575 | 0.1824 | 32 GB GDDR7 |
GeForce RTX 4090 | 82.575 | 450 | 0.1835 | 24 GB GDDR6X |
GeForce RTX 4090 D | 73.544 | 450 | 0.1634 | 24 GB GDDR6X |
GeForce RTX 5080 | 56.341 | 360 | 0.1565 | 16 GB GDDR7 |
GeForce RTX 4080 SUPER | 51.302 | 320 | 0.1603 | 16 GB GDDR6X |
GeForce RTX 4080 | 48.737 | 320 | 0.1523 | 16 GB GDDR6X |
GeForce RTX 4070 Ti SUPER | 44.099 | 285 | 0.1547 | 16 GB GDDR6X |
GeForce RTX 5070 Ti | 43.904 | 300 | 0.1463 | 16 GB GDDR7 |
GeForce RTX 4070 Ti | 40.09 | 285 | 0.1407 | 12 GB GDDR6X |
GeForce RTX 3090 Ti | 39.997 | 450 | 0.0889 | 24 GB GDDR6X |
GeForce RTX 3090 | 35.581 | 350 | 0.1017 | 24 GB GDDR6X |
GeForce RTX 4070 SUPER | 35.482 | 220 | 0.1613 | 12 GB GDDR6X |
GeForce RTX 3080 Ti | 34.099 | 350 | 0.0974 | 12 GB GDDR6X |
GeForce RTX 5070 | 30.843 | 250 | 0.1234 | 12 GB GDDR7 |
GeForce RTX 3080 (12 GB) | 30.643 | 350 | 0.0876 | 12 GB GDDR6X |
GeForce RTX 3080 | 29.768 | 320 | 0.0930 | 10 GB GDDR6X |
GeForce RTX 4070 | 29.146 | 200 | 0.1457 | 12 GB GDDR6X |
GeForce RTX 4060 Ti (16 GB) | 22.108 | 160 | 0.1382 | 16 GB GDDR6 |
GeForce RTX 4060 Ti | 22.108 | 160 | 0.1382 | 8 GB GDDR6 |
GeForce RTX 3070 Ti (GA104-400) | 21.75 | 290 | 0.0750 | 8 GB GDDR6X |
GeForce RTX 3070 Ti (GA102-150) | 21.75 | 290 | 0.0750 | 8 GB GDDR6X |
GeForce RTX 3070 | 20.314 | 220 | 0.0924 | 8 GB GDDR6 |
GeForce RTX 3060 Ti (GDDR6X) | 16.197 | 200 | 0.0810 | 8 GB GDDR6 |
GeForce RTX 3060 Ti (GA104-202) | 16.197 | 200 | 0.0810 | 8 GB GDDR6 |
GeForce RTX 3060 Ti (GA104-200) | 16.197 | 200 | 0.0810 | 8 GB GDDR6 |
GeForce RTX 3060 Ti (GA103-200) | 16.197 | 200 | 0.0810 | 8 GB GDDR6 |
GeForce RTX 4060 | 15.114 | 160 | 0.0945 | 8 GB GDDR6 |
GeForce RTX 2080 Ti (TU102-300A) | 14.275 | 260 | 0.0549 | 11 GB GDDR6 |
GeForce RTX 2080 Ti (TU102-300) | 14.275 | 260 | 0.0549 | 11 GB GDDR6 |
GeForce RTX 3060 (GA106-300) | 12.738 | 170 | 0.0749 | 12 GB GDDR6 |
GeForce RTX 3060 (GA104-150) | 12.738 | 170 | 0.0749 | 8 GB GDDR6 |
GeForce RTX 3060 (8 GB) (GA106-302) | 12.738 | 170 | 0.0749 | 8 GB GDDR6 |
GeForce RTX 3060 (12 GB) (GA106-302) | 12.738 | 170 | 0.0749 | 12 GB GDDR6 |
GeForce GTX 1080 Ti | 11.34 | 250 | 0.0454 | 11 GB GDDR5X |
GeForce RTX 2080 Super | 11.182 | 260 | 0.0430 | 8 GB GDDR6 |
GeForce RTX 2080 (TU104-400A) | 10.598 | 215 | 0.0493 | 8 GB GDDR6 |
GeForce RTX 2080 (TU104-400) | 10.598 | 215 | 0.0493 | 8 GB GDDR6 |
GeForce RTX 3050 (GA107-150) | 9.098 | 115 | 0.0791 | 8 GB GDDR6 |
GeForce RTX 3050 (GA106-150) | 9.098 | 130 | 0.0700 | 8 GB GDDR6 |
GeForce RTX 2070 Super | 9.062 | 175 | 0.0518 | 8 GB GDDR6 |
GeForce GTX 1070 | 6.463 | 150 | 0.0431 | 8 GB GDDR5 |
GeForce RTX 2060 (6 GB) (TU106) | 6.451 | 160 | 0.0403 | 6 GB GDDR6 |
GeForce RTX 2060 (6 GB) (TU104) | 6.451 | 160 | 0.0403 | 6 GB GDDR6 |
GeForce GTX 1660 Ti | 5.437 | 120 | 0.0453 | 6 GB GDDR6 |
GeForce GTX 1660 Super | 5.027 | 125 | 0.0402 | 6 GB GDDR6 |
GeForce GTX 1660 | 5.027 | 120 | 0.0419 | 6 GB GDDR5 |
GeForce GTX 1650 Super | 4.416 | 100 | 0.0442 | 4 GB GDDR6 |
GeForce GTX 1060 (GDDR5X) | 4.372 | 120 | 0.0364 | 6 GB GDDR5 |
GeForce GTX 1060 (9 GT/s) | 4.372 | 120 | 0.0364 | 6 GB GDDR5 |
GeForce GTX 1060 (8 GT/s) | 4.372 | 120 | 0.0364 | 6 GB GDDR5 |
GeForce GTX 1060 (3 GB) | 3.935 | 120 | 0.0328 | 3 GB GDDR5 |
🔥 AI 计算 & 性能:RTX 50 系列真的提升大吗?
从数据上看,RTX 50 系列在 AI 计算能力上的提升相当显著:
- RTX 5090 的 TFLOPS 高达 104.88,比 RTX 4090 提升 27%!
- RTX 5080 比 RTX 4080 强约 15%,功耗却基本持平,性价比进一步提升。
- 中端 RTX 4070 SUPER/4070 也有不错的 TFLOPs/W,适合追求能效比的用户。
但需要注意的是,RTX 50 系列的单位功耗算力(TFLOPs/W)并没有突破性提升,这意味着:
- 高端卡(5090/4090)在极限性能上有提升,但功耗也水涨船高。
- 中端卡(4070/4060 Ti)能效更高,反而是更适合 AI 部署和长时间训练的选择。
🎯 不同用户群体如何选卡?
既然 AI 计算能力提升明显,那应该选哪张显卡?这里给出一些建议:
✅ AI 训练/深度学习:
- 预算充足 → RTX 5090 / 4090(超高算力,适合大规模模型训练)
- 追求性价比 → RTX 4080 SUPER / 4070 SUPER(不错的 TFLOPs/W,价格适中)
- 入门玩家 → RTX 4060 Ti(16GB)(大显存更重要)
✅ 游戏玩家(4K/2K):
- 4K 120Hz → RTX 5090 / 4090
- 2K 高刷新率 → RTX 4070 Ti SUPER / 4070
- 1080p → RTX 4060 / RTX 3060(12GB)
✅ Stable Diffusion / 本地 AI 生成任务:
- 显存是关键 → RTX 4090(24GB)/ 3090(24GB)
- 追求低功耗 → RTX 4070 SUPER / 4060 Ti(16GB)
✅ 普通办公 & 轻量 AI 任务:
- RTX 3060 / RTX 3050 仍然能满足需求
💡 结论:RTX 50 系列值得升级吗?
1️⃣ 如果你是 AI 开发者,并且对大规模训练、推理加速有高需求,RTX 5090 / 4090 是无脑选择。
2️⃣ 如果你是 AI 轻度用户(本地部署/Stable Diffusion),那么RTX 4070 SUPER / 4060 Ti(16GB)更具性价比。
3️⃣ 如果你是游戏玩家,RTX 5080 及以上适合 4K 党,而 4070 Ti SUPER 适合 2K 高刷。
4️⃣ 如果你预算有限,上一代的旗舰卡(如 RTX 3090 Ti)仍然值得考虑,性价比远胜 50 系低端卡。
📢 你的显卡选购计划是什么?欢迎留言交流!
不定期更新专业知识和有趣的东西,欢迎反馈、点赞、加星
您的鼓励和支持是我坚持创作的最大动力!ღ( ´・ᴗ・` )