内容预告
**NVIDIA 再次升级显卡家族!**随着 GeForce RTX 5090、5080、5070 的发布,NVIDIA 从 20 系列到 50 系列(除了 5060 还未亮相)几乎覆盖了所有性能档位,型号繁多让人眼花缭乱。面对这些新显卡,你是否也在纠结:AI 计算能力到底提升了多少?功耗表现是否值得?
本篇文章带你快速了解最新 RTX 显卡的 AI 计算性能,并通过 TOPs/W(算力效率) 这一关键指标,帮你选出最适合你的 GPU!
先给结论,感兴趣的朋友请看下面对英伟达所有桌面 GPU 的详细数据分析:
✅ 需要极致 AI 性能(如 AI 训练、大型模型部署):
👉 RTX 5090 / 5080,最新架构,最强 AI 计算能力。
✅ 追求功耗与 AI 性能平衡(如 AI 推理、轻量训练):
👉 RTX 5070 Ti / 4070 Ti SUPER,能效比高,价格适中。
✅ 预算有限但仍需 AI 计算能力(如 Stable Diffusion 本地推理):
👉 RTX 4060 Ti (16GB),功耗低,显存大,适合轻量 AI 任务。
为爱发电,如果对你有帮助,请不吝点赞和关注,谢谢 😁
🔍 AI 计算能力:显卡选购的新标准?
近年来,AI 计算能力 (TOPs, Tera Operations Per Second) 逐渐成为衡量 GPU 性能的重要指标。无论是 AI 训练、推理加速,还是 Stable Diffusion、ChatGLM 等本地 AI 模型部署,显卡的 AI 处理能力都直接决定了运行效率。
本次,我们整理了主流 NVIDIA GeForce RTX 显卡的 AI 计算能力、功耗、显存等关键参数,帮助你做出最优选择。
📊 GeForce RTX AI 性能对比
显卡 | AI TOPs | 功耗 (W) | TOPs/W | 显存大小 | 显存带宽 |
---|---|---|---|---|---|
GeForce RTX 5090 | 3356.3 | 575 | 5.84 | 32 GB GDDR7 | 1200 GB/s |
GeForce RTX 5080 | 1802.9 | 360 | 5.01 | 16 GB GDDR7 | 912 GB/s |
GeForce RTX 5070 Ti | 1404.9 | 300 | 4.68 | 16 GB GDDR7 | 608 GB/s |
GeForce RTX 4090 | 1321.2 | 450 | 2.94 | 24 GB GDDR6X | 1008 GB/s |
GeForce RTX 4090 D | 1176.7 | 425 | 2.77 | 24 GB GDDR6X | 1008 GB/s |
GeForce RTX 5070 | 987.0 | 250 | 3.95 | 12 GB GDDR7 | 608 GB/s |
GeForce RTX 4080 SUPER | 820.8 | 320 | 2.57 | 16 GB GDDR6X | 716 GB/s |
GeForce RTX 4080 | 779.8 | 320 | 2.44 | 16 GB GDDR6X | 716 GB/s |
GeForce RTX 4070 Ti SUPER | 705.6 | 285 | 2.48 | 16 GB GDDR6X | 504 GB/s |
GeForce RTX 4070 Ti | 641.4 | 285 | 2.25 | 12 GB GDDR6X | 504 GB/s |
GeForce RTX 4070 SUPER | 567.7 | 220 | 2.58 | 12 GB GDDR6X | 504 GB/s |
GeForce RTX 4070 | 466.3 | 200 | 2.33 | 12 GB GDDR6X | 504 GB/s |
GeForce RTX 4060 Ti (16 GB) | 353.7 | 160 | 2.21 | 16 GB GDDR6 | 288 GB/s |
GeForce RTX 4060 Ti | 353.7 | 160 | 2.21 | 8 GB GDDR6 | 224 GB/s |
GeForce RTX 3090 Ti | 320.0 | 450 | 0.71 | 24 GB GDDR6X | 1008 GB/s |
GeForce RTX 3090 | 284.7 | 350 | 0.81 | 24 GB GDDR6X | 936 GB/s |
GeForce RTX 3080 Ti | 272.8 | 350 | 0.78 | 12 GB GDDR6X | 912 GB/s |
GeForce RTX 3080 12GB | 245.1 | 350 | 0.70 | 12 GB GDDR6X | 912 GB/s |
GeForce RTX 3080 | 238.1 | 320 | 0.74 | 10 GB GDDR6X | 760 GB/s |
GeForce RTX 3070 Ti | 174.0 | 290 | 0.60 | 8 GB GDDR6X | 608 GB/s |
GeForce RTX 3070 | 162.5 | 220 | 0.74 | 8 GB GDDR6 | 448 GB/s |
GeForce RTX 3060 Ti | 129.6 | 200 | 0.65 | 8 GB GDDR6 | 448 GB/s |
GeForce RTX 3060 (12 GB) (GA106-302) | 101.9 | 170 | 0.60 | 12 GB GDDR6 | 360 GB/s |
GeForce RTX 3060 (8 GB) (GA106-302) | 101.9 | 170 | 0.60 | 8 GB GDDR6 | 240 GB/s |
GeForce RTX 3060 (GA104-150) | 101.9 | 170 | 0.60 | 8 GB GDDR6 | 360 GB/s |
GeForce RTX 3060 (GA106-300) | 101.9 | 170 | 0.60 | 12 GB GDDR6 | 360 GB/s |
GeForce RTX 2080 Ti (TU102-300) | 114.2 | 260 | 0.44 | 11 GB GDDR6 | 616 GB/s |
GeForce RTX 2080 Ti (TU102-300A) | 114.2 | 260 | 0.44 | 11 GB GDDR6 | 616 GB/s |
Nvidia Titan RTX | 130.5 | 280 | 0.47 | 24 GB GDDR6 | 672 GB/s |
GeForce RTX 3050 (GA107-150) | 72.79 | 115 | 0.63 | 8 GB GDDR6 | 224 GB/s |
GeForce RTX 3050 (GA106-150) | 72.8 | 130 | 0.56 | 8 GB GDDR6 | 224 GB/s |
GeForce RTX 3050 (GA106) | 64.70 | 130 | 0.50 | 8 GB GDDR6 | 224 GB/s |
GeForce RTX 2070 (TU106-400) | 63.0 | 175 | 0.36 | 8 GB GDDR6 | 448 GB/s |
GeForce RTX 2070 (TU106-400A) | 63.0 | 175 | 0.36 | 8 GB GDDR6 | 448 GB/s |
GeForce RTX 2060 (12 GB) | 57.4 | 185 | 0.31 | 12 GB GDDR6 | 336 GB/s |
GeForce RTX 2060 Super | 57.4 | 175 | 0.33 | 8 GB GDDR6 | 448 GB/s |
GeForce RTX 3050 (6 GB) | 54.2 | 130 | 0.42 | 6 GB GDDR6 | 224 GB/s |
GeForce RTX 2060 (6 GB) (TU106) | 51.6 | 160 | 0.32 | 6 GB GDDR6 | 336 GB/s |
GeForce RTX 2060 (6 GB) (TU104) | 51.6 | 160 | 0.32 | 6 GB GDDR6 | 336 GB/s |
💡 数据解读:
- RTX 5090 领跑 AI 计算,算力高达 3356 TOPs,但功耗 575W,适合顶级 AI 应用。
- 性价比之选:RTX 5080 每瓦算力高达 5.01 TOPs/W,比 4090 更节能。
- 老卡 VS 新卡:RTX 3090 Ti 的 AI 计算能力远低于 RTX 4070 Ti,而功耗却高达 450W,不适合 AI 任务。
🎯 选购建议:你的需求适合哪款显卡?
✅ 需要极致 AI 性能(如 AI 训练、大型模型部署):
👉 RTX 5090 / 5080,最新架构,最强 AI 计算能力。
✅ 追求功耗与 AI 性能平衡(如 AI 推理、轻量训练):
👉 RTX 5070 Ti / 4070 Ti SUPER,能效比高,价格适中。
✅ 预算有限但仍需 AI 计算能力(如 Stable Diffusion 本地推理):
👉 RTX 4060 Ti (16GB),功耗低,显存大,适合轻量 AI 任务。
❌ 不建议用于 AI:
RTX 3090 Ti、RTX 2080 Ti 等老卡,虽然显存大,但 AI 计算能力落后,功耗高,不适合作为 AI 专用显卡。
🛠️ 如何测试你的显卡 AI 计算能力?
想知道你的显卡在 AI 任务上的真实表现?可以使用以下工具进行测试:
- NVIDIA TensorRT:深度学习推理加速
- Stable Diffusion WebUI:本地 AI 绘图
- AI-Benchmark:多任务 AI 计算能力测试
可以在命令行运行 nvidia-smi
查看显卡实时功耗,并结合 PyTorch 或 TensorFlow 测试 AI 推理速度。
🔥 未来趋势:更强 AI 计算、更高能效
NVIDIA 未来显卡将进一步提升 AI 计算能力,并降低功耗,例如:
- 更强的 Tensor Core,提升 AI 训练和推理速度
- GDDR7 显存,提供更高带宽,优化 AI 计算
- 更高 TOPs/W,提升 AI 计算的能效比
如果你是 AI 开发者、模型训练者或 AI 绘图爱好者,RTX 50 系列显卡将是未来的主流选择。
📢 你最看好哪款显卡?欢迎留言交流!
不定期更新专业知识和有趣的东西,欢迎反馈、点赞、加星
您的鼓励和支持是我坚持创作的最大动力!ღ( ´・ᴗ・` )