【机器学习学习过程中的笔记1——Stochastic gradient descent 和 Batch gradient descent 】

   

<span style="font-size:18px;">#include "stdio.h"  
#include<iostream>
using namespace std;
#include "stdio.h"  

int main(void)
{
	float matrix[4][2] = { { 1, 4 }, { 2, 5 }, { 5, 1 }, { 4, 2 } };
	float result[4] = { 19, 26, 19, 20 };
	float theta[2] = { 2, 5 };                   
	float learning_rate = 0.01;
	float loss = 1000.0;                    
	for (int i = 0; i<100 && loss>0.0001; ++i)
	{
		float error_sum[2] = { 0.0, 0.0 };
		for (int j = 0; j<4; ++j)
		{
			float h = 0.0;
			for (int k = 0; k<2; ++k)
			{
				h += matrix[j][k] * theta[k];
			}
			for (int k = 0; k < 2; ++k)
			{
				error_sum[k] += (result[j] - h)*matrix[j][k];
			}
		}
		for (int k = 0; k<2; ++k)
		{
			theta[k] += learning_rate*error_sum[k];
		}
		printf("*************************************\n");
		printf("theta now: %f,%f\n", theta[0], theta[1]);
		loss = 0.0;
		for (int j = 0; j<4; ++j)
		{
			float sum = 0.0;
			for (int k = 0; k<2; ++k)
			{
				sum += matrix[j][k] * theta[k];
			}
			loss += (sum - result[j])*(sum - result[j]);
		}
		printf("loss  now: %f\n", loss);
	}
	system("pause");
	// return 0;
}</span>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值