”Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition“阅读小结

本文提出了一种层次RNN(HRNN-L)模型,用于端到端的骨架基动作识别。该模型将人体骨骼分为五个部分,通过分层融合递归神经网络实现。实验在MSR Action3D、Berkeley MHAD和HDM05数据集上进行,与多种RNN变体比较,证明了HRNN-L在性能和效率上的优势。为解决过拟合和欠拟合问题,采用了增加噪声和调整学习率的策略。
摘要由CSDN通过智能技术生成

摘要:

人的动作识别能够由骨架关节的轨迹来表示,传统的方法通常利用手工制作的特征模拟人类骨骼的空间结构和时间动态,通过精心设计的分类器识别人类动作我们提出一个端到端的层次RNN基于骨架的动作识别。HRNN-L模型不是将整个骨骼作为输入,而是根据人类的身体结构将人类的骨骼划分成五个部分,然后分别的划分进五个子网。最后随着层数的增加,前一层特征融合的结果作为更高层的输入。最后骨架序列的表示被送入到一个单层感知器,将感知机积累的结果作为最后的决定。论文后面将该模型与的其他五种衍生的深度RNN构架进行比较,验证了这个模型的有效性;并且在三个公开的数据集上与其他几种方法相比。实验结果表明该模型具有最好的表现性能和很高的计算效率。

1. Introduction

传统关于动作识别的研究主要集中在基于由2D摄像机记录的视频的动作识别。但实际上,人类活动一般3维空间上进行表示和识别。而人类的身体可以被看成由骨头和链接关节和身体躯干的关节铰链构成的结构系统,人的运动行为可以看成有这些关节的运动坐标的空间位移来表示。目前,可靠的关节坐标可以深度传感器使用实时骨架估计算法获得。大部分存在的基于骨骼的动作识别都是用TP(时间金字塔)和HMMS(隐马尔科夫)模拟骨骼关节的时间动态;TP方法通常受限于时间窗口的宽度,只能利用有用的上下文信息;而HMMS很难或

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值