时间序列模型 (五): 趋势外推预测方法

本文详细介绍了趋势外推预测方法的六个阶段,包括选择预测参数、数据收集、曲线拟合等,并通过实例展示了指数曲线、修正指数曲线、Gompertz曲线和Logistic曲线等常用数学模型的预测应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列的其它博文系列:

时间序列模型 (一):模型概述

时间序列模型 (二):移动平均法

时间序列模型 (三):指数平滑法

时间序列模型 (四):差分指数平滑法、 自适应滤波法v

时间序列模型 (五): 趋势外推预测方法

时间序列模型 (六):平稳时间序列模型 :自回归AR 、移动平均 MA 、ARMA 模型

时间序列模型 (七): 时间序列建模的基本步骤


趋势外推法是根据事物的历史和现时资料,寻求事物发展规律,从而推测出事物 未来状况的一种比较常用的预测方法。利用趋势外推法进行预测,主要包括六个阶段:

(a)选择应预测的参数; (b)收集必要的数据;   (c)利用数据拟合曲线;  

(d)趋势外 推;(e)预测说明;(f)研究预测结果在进行决策中应用的可能性。

趋势外推法常用的典型数学模型有:指数曲线、修正指数曲线、生长曲线、包络 曲线等。 

目录

 指数曲线法 

 修正指数曲线法 

三和法

Compertz 曲线 

 Logistic 曲线(生长曲线) 

  趋势线的选择


 指数曲线法 

一般来说,技术的进步和生产的增长,在其未达饱和之前的新生时期是遵循指数 曲线增长规律的,因此可以用指数曲线对发展中的事物进行预测。 

 

 修正指数曲线法 

利用指数曲线外推来进行预测时,存在着预测值随着时间的推移会无限增大的情 况。这是不符合客观规律的。因为任何事物的发展都是有一定限度的。例如某种畅销产 品,在其占有市场的初期是呈指数曲线增长的,但随着产品销售量的增加,产品总量接 近于社会饱和量时。这时的预测模型应改用修正指数曲线。 

三和法

 

例 8  根据统计资料,某厂收音机连续 15 年的销售量如表 11。 试用修正指数曲线预测 1986 年的销售量。 

计算的 MATLAB 程序如下: 

function chanliang 
clc,clear 
global a b k 
load xsh.txt %原始数据存放在纯文本文件 xsh.txt 中 
yt=xsh; n=length(yt);m=n/3 
cf=diff(yt); 
for i=1:n-2     
    bzh(i)=cf(i+1)/cf(i); 
end 
range=minmax(bzh) 
s1=sum(yt(1:m)), s2=sum(yt(m+1:2*m)), s3=sum(yt(2*m+1:end)) 
b=((s3-s2)/(s2-s1))^(1/m) a=(s2-s1)*(b-1)/(b*(b^m-1)^2) 
k=(s1-a*b*(b^m-1)/(b-1))/m 
y=yuce(1:18) 
%************************************ 
%定义预测函数 
%************************************ 
function 
y=yuce(t) 
global a b k 
y=k+a*b.^t;  

Compertz 曲线 

 

例 9(续例 8)  根据表 11 的数据,试确定收音机销售量的 Gompertz 曲线方程, 求出各年收音机销售量的趋势值,并预测 1986 年的销售量。

计算的 MATLAB 程序如下: 

function chanliang2 
clc,clear 
global a b k 
load xsh.txt %原始数据存放在纯文本文件 xsh.txt 中 
yt=log(xsh); n=length(yt);m=n/3; 
s1=sum(yt(1:m)), s2=sum(yt(m+1:2*m)), s3=sum(yt(2*m+1:end)) 
b=((s3-s2)/(s2-s1))^(1/m) 
a=(s2-s1)*(b-1)/(b*(b^m-1)^2) 
k=(s1-a*b*(b^m-1)/(b-1))/m a=exp(a) 
k=exp(k) 
y=yuce(1:18) 
%************************************ %定义预测函数 %************************************ function y=yuce(t); 
global a b k 
y=k*a.^(b.^t); 

 Logistic 曲线(生长曲线) 

生物的生长过程经历发生、发展到成熟三个阶段,在三个阶段生物的生长速度是不 一样的,例如南瓜的重量增长速度,在第一阶段增长的较慢,在发展时期则突然加快, 而到了成熟期又趋减慢,形成一条 S 形曲线,这就是有名的 Logistic 曲线(生长曲线),很多事物,如技术和产品发展进程都有类似的发展过程,因此 Logistic 曲线在预测中有 相当广泛的应用。 

 

例 10(续例 8)  根据表 10 的数据,试确定收音机销售量的 Logistic 曲线方程, 求出各年收音机销售量的趋势值,并预测 1986 年的销售量。 

计算的 MATLAB 程序如下: 

function chanliang3 
clc,clear 
global a b k 
load xsh.txt %原始数据存放在纯文本文件 xsh.txt 中 
yt=1./xsh; n=length(yt);m=n/3; 
s1=sum(yt(1:m)), s2=sum(yt(m+1:2*m)), s3=sum(yt(2*m+1:end)) 
b=((s3-s2)/(s2-s1))^(1/m) 
a=(s2-s1)*(b-1)/(b*(b^m-1)^2) 
k=(s1-a*b*(b^m-1)/(b-1))/m 
y=yuce(1:18) 
%************************************ %定义预测函数 %************************************ function y=yuce(t); 
global a b k 
y=1./(k+a*b.^t); 


  趋势线的选择

 趋势线的选择有以下几种方式

当有几种趋势线可供选择时,应选择S 小的趋势线。

 


时间序列的其它博文系列:

时间序列模型 (一):模型概述

时间序列模型 (二):移动平均法

时间序列模型 (三):指数平滑法

时间序列模型 (四):差分指数平滑法、 自适应滤波法v

时间序列模型 (五): 趋势外推预测方法

时间序列模型 (六):平稳时间序列模型 :自回归AR 、移动平均 MA 、ARMA 模型

时间序列模型 (七): 时间序列建模的基本步骤

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值