Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes 论文笔记

本文介绍了CNAPs,一种用于多任务分类的自适应模型,平衡了灵活性和鲁棒性。CNAPs使用全局参数和特定任务参数,通过自适应神经网络计算线性分类器和特征提取器的参数,适应不同的任务分配。
摘要由CSDN通过智能技术生成

前言

通用图像分类系统设计元学习和小样本学习,现有的一些研究通常会考虑在训练和测试时进行均匀的任务分配,因此网络在处理新任务时只需进行很小的调整。本文设计了一个完全自适应的系统,以应对不同的任务分配情况,该系统需要在模型和训练过程中进行特定的设计选择。

现有的用元学习和小样本学习来处理图像分类的方法具有两个基本的trade-off:

  1. 适应每个任务的参数数量。一种方法仅调整分类器的head中的参数,而特征提取器的参数保持不变,这种方法虽然简单实用,但当任务分配是异构的情况下,会发生欠拟合;另一种方法就是调整特征提取器中的所有参数,以提高拟合能力,但会增加计算成本,并且在low-shot情况下会发生过拟合。因此,需要确保模型的拟合能力和自适应可靠性之间的平衡。
  2. 自适应机制。在基于梯度的自适应方法中,虽然可以灵活地整合训练数据,但在测试时计算效率底下,可能需要对优化过程进行调整,并且容易发生过拟合;另一种方法是,使用函数逼近器(function approximators)将训练数据直接映射到所需参数,这样就产生了固定成本的自适应机制,但如果函数逼近不够灵活,可能会发生欠拟合。

本文提出了一种针对这两个trade-off的模型类(model class),称为Conditional Neural Adaptive Processes (CNAPS),CNAPs直接对所需的预测分布进行建模,从而引入CNPs方法来处理多任务分类。CNAPs可以处理不同方式的分类任务,并引入了参数化和训练过程,使得模型能够在测试时学习适应不同分类任务的特征表示。CNAPs利用了两方面的内容:

  1. 具有共享全局参数和少量特定任务参数的分类模型。实验证明,通过识别少量关键参数,模型可以在灵活性和鲁棒性之间达到平衡;
  2. 一个丰富的自适应神经网络,具有自回归参数化(auto-regressive parameterization)功能,能够避免欠拟合,并且在实际中使用现有数据集很容易进行训练。

模型设计

假设有大量的训练任务,每个任务都包含一组输入 x x x和标签 y y y。具体来说,任务 τ \tau τ包含一个context set D τ = { ( x n τ , y n τ ) } n = 1 N τ D^{\tau}=\lbrace (x^{\tau}_{n},y^{\tau}_{n}) \rbrace ^{N_{\tau}}_{n=1} Dτ={ (xnτ,ynτ)}n=1Nτ,其中 x n τ x^{\tau}_{n} xnτ y n τ y^{\tau}_{n} ynτ分别是输入和输出;除此之外,任务 τ \tau τ还包含一个target set { ( x m τ ∗ , y n τ ∗ ) } m = 1 M τ \lbrace (x^{\tau *}_m,y^{\tau *}_n) \rbrace ^{M_{\tau}}_{m=1} { (xmτ,ynτ)}m=1Mτ,其中 y n τ ∗ y^{\tau *}_n ynτ是预测值。那么给定 x ∗ x^* x,CNPs构建的预测分布为:
在这里插入图片描述
其中 θ \theta θ是全局的分类器参数,在任务之间共享。 ψ τ \psi ^{\tau} ψτ是局部的特定于任务的参数,由函数 ψ ϕ ( ⋅ ) \psi _{\phi}(\cdot) ψϕ()生成。而 ψ ϕ ( ⋅ ) \psi _{\phi}(\cdot) ψϕ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值