小米发布会机器狗CyberDog「铁蛋」正式亮相

小米在8月10日的新品发布会上推出了首款机器狗CyberDog,昵称“铁蛋”。这款机器狗能跳舞、识别观众并打招呼,甚至能后空翻。基于MIT的开源代码和ROS2平台,小米在短时间内打造了一款具备高完成度的机器狗。尽管硬件和软件都是基于开源技术,但小米的创新在于将它们整合成一个功能丰富的四足机器人。目前市场上的机器狗价格高昂,而小米9999元的定价为爱好者提供了更多机会。未来,机械狗有望在导盲、导航等领域发挥作用,进一步融入日常生活。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8月10日是小米的新品发布会,雷军除了协新的MIX 4亮相之外,还发布了小米的第一款机器狗CyberDog,中文名叫**“铁蛋”**。之所以取这么大众的名字,原因是因为小米内部希望它比较命硬,能够使得这个项目成功。

1 .正式亮相

在发布会上,雷军演示以下几个场景:

  • 1.随着音乐跳舞:
    在这里插入图片描述
  • 2.与观众打招呼:这里有个有趣的地方在于,它能够自动识别观众的位置,然后站立起来打招呼。
    在这里插入图片描述
  • 3.帅帅的后空翻
    在这里插入图片描述

最后,雷军在演示中伸手摸它的狗头,它会自己主动低下头来让人抚摸;在演示完之后,这只狗主动跟着雷军往舞台中央走,雷军在示意它不要跟着之后,它会自行走开。这种完成度极高的机器狗,售价仅为9999元,确实是广大发烧友的一次入手机会。

2.身体构造

软件方面,小米主要使用了MIT的开源代码Mini Cheetah 以及 ROS 2的开源平台,在10个月的时间内,搭建出一套比较成熟的软件体系。尽管基于的是开源代码,但是小米能够在短短时间内就造成一个较为完整的机器狗,确实不容易。
在这里插入图片描述

机器狗的难点在于硬件方面的控制。

  • 机器狗的“心脏”:这次“铁蛋”采用了自研高性能伺服电机,让它能够适应不同复杂的地形
    在这里插入图片描述
  • 为了提升机器狗的感知能力,搭载了触摸传感器,光传感器等,同时搭载了深度摄像,超广角摄像机等
    在这里插入图片描述
  • 核心图像计算方面,采用了384个CUDA Cores,6个ARM CPU,2个深度学习加速引擎:
    在这里插入图片描述

软硬件的成功结构,使得“铁蛋”能够做成如:奔跑、跳跑、左右转体、后空翻、握手等操作。同时辅助复杂的图像运算,使得它能够自主识别跟随、导航避障等。
在这里插入图片描述

有知乎网友这样评价“铁蛋”:从外观上来说,小米的这个更有“黑科技”的感觉,但机器人这个不比手机,咱不能只是摆出一堆参数来告诉观众自己多牛,软硬件如何结合发挥最大的潜力才是关键。

3.当前机器狗的发展

在国外,波士顿的机械狗Spot作为第一款商用产品早已问世:
在这里插入图片描述

它可以通过简单的类似与“游戏手柄”的机器进行操作:
在这里插入图片描述
但其动则几十万的售价让普通家庭难以一睹其真面目。

国内也开始有厂商进入这个领域,比如“宇树科技机械狗A1”,售价1w:
在这里插入图片描述
南京蔚蓝科技阿尔法狗,售价2w6:
在这里插入图片描述

再到腾讯的MAX:
在这里插入图片描述
最后再到今天的小米机械狗,9999的价格,已经可以让很多机械狗发烧友动心了。

4.未来

未来,当机械狗进入普通家庭,它能够做什么?

最让人想到的是,让机械狗搭配语音功能,导盲功能,作为导盲电子狗提供给盲人。设想一个场景,当前方有危险时,它能够通过语音或者震动功能,提醒主人前方有危险。

又或者搭载机械臂,为人类提供更多方便快捷的服务。
在这里插入图片描述
相信,四足机器人能够终有一天,真正进入寻常百姓的家庭中,为人类社会做出更多的贡献。

<think>嗯,用户想了解如何通过舵机控制机器狗的动作或行为,特别是使用伺服电机的教程。首先,我需要回忆一下伺服电机在四足机器人中的应用。根据引用[3],四足机器人的关节驱动通常使用无刷电机或永磁同步电机,结合FOC控制,这样能实现高效和精准的运动。舵机其实也是一种伺服电机,可能用户指的是普通的舵机,或者是更专业的伺服系统? 接下来,用户可能想知道具体的控制步骤。需要分步讲解,比如硬件选型、运动学建模、步态生成、控制算法、软件实现等。引用[3]提到膝关节的驱动方式,比如四连杆或推杆,这可能涉及到运动学设计。同时,引用[4]提到小米CyberDog使用了自研的伺服电机和全志芯片进行控制,这说明实际应用中可能需要特定的控制板或处理器。 然后,用户可能需要示例代码,比如Python或Arduino的PWM控制,这样他们可以实际操作。引用中的例子有Python代码,所以用Python示例可能更合适。另外,步态生成部分需要解释常见的步态如爬行、小跑,以及如何分解动作到每个关节的角度。 还要考虑用户可能的误区,比如直接驱动关节可能导致重量问题,所以需要解释设计中的注意事项,如引用[3]提到的早期研究中的问题。同时,引用[2]的应用场景可能帮助用户理解不同步态的适用情况,比如检查建筑物需要稳定的步态,而户外探险可能需要更灵活的步态。 最后,生成相关问题时要围绕伺服电机控制、步态优化、传感器集成等,帮助用户深入探索。需要确保引用正确,比如FOC控制来自引用[3],应用场景来自引用[2],硬件设计参考引用[3]和[4]。</think>### 通过伺服电机控制四足机器人运动的实现步骤 #### 一、硬件系统构建 1. **伺服电机选型** 选择支持位置/速度/力矩三环控制的伺服电机,需满足关节力矩需求。例如小米CyberDog使用自研高性能伺服电机,通过全志MR813芯片实现多轴协同控制[^4]。 2. **驱动电路设计** 采用FOC(磁场定向控制)算法驱动无刷电机,通过PWM信号控制电机相位电流。典型电路包含: - 逆变器模块(如MOSFET/IGBT) - 电流采样电路 - 编码器接口 ```python # 示例:通过PWM控制舵机角度(Arduino) from machine import PWM, Pin servo = PWM(Pin(15), freq=50) servo.duty(int(角度/180*115 + 25)) # 角度转占空比 ``` #### 二、运动学建模 建立四足机器人运动学模型: $$ \begin{cases} x = L_1\cosθ_1 + L_2\cos(θ_1+θ_2) \\ y = L_1\sinθ_1 + L_2\sin(θ_1+θ_2) \end{cases} $$ 其中$L_1$为大腿长度,$L_2$为小腿长度,$θ_1$和$θ_2$为关节角度[^3]。 #### 三、步态生成 1. **基础步态设计** - 爬行步态(静态稳定) - 小跑步态(动态稳定) - 跳跃步态(单腿爆发) 2. **足端轨迹规划** 采用复合摆线轨迹: $$ \begin{cases} x(t) = v_x t + A\sin(2πt/T) \\ z(t) = h(1 - \cos(2πt/T))/2 \end{cases} $$ 其中$h$为抬腿高度,$T$为步态周期[^1]。 #### 四、控制算法实现 1. **逆运动学解算** 根据足端坐标$(x,y)$反推关节角度: $$ θ_2 = \arccos\left(\frac{x^2+y^2-L_1^2-L_2^2}{2L_1L_2}\right) $$ $$ θ_1 = \arctan\left(\frac{y}{x}\right) - \arctan\left(\frac{L_2\sinθ_2}{L_1+L_2\cosθ_2}\right) $$ 2. **PID关节控制** 实现位置闭环控制: ```python class PID: def __init__(self, Kp, Ki, Kd): self.Kp, self.Ki, self.Kd = Kp, Ki, Kd self.last_error = 0 self.integral = 0 def update(self, error, dt): self.integral += error * dt derivative = (error - self.last_error) / dt output = self.Kp*error + self.Ki*self.integral + self.Kd*derivative self.last_error = error return output ``` #### 五、系统集成调试 1. 使用ROS(机器人操作系统)搭建控制框架: ```bash # 创建步态控制节点 rosrun quadruped_control gait_generator.py ``` 2. 通过IMU数据实现姿态补偿控制
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛克-李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值