本次Prompt技术全景综述共收录了1,565篇论文,由来自马里兰大学研究团队、OpenAI、斯坦福、微团等知名机构的研究人员撰写。既有学术界重量级团队,也有工业界的巨头。
prompt本质定义:
Prompt是一段输入给生成式AI模型的文本,用于引导模型产生期望的输出。这个定义点明了Prompt的本质属性和功能定位。
prompt的六大构成要素
1.指令(directive)
这是Prompt的灵魂所在。通过精心设计的指令,我们可以向模型传达任务的核心诉求。举个例子,如果我们想要生成一篇关于春天的诗歌,可以使用"请写一首歌颂春天美好的诗"这样的指令。指令的表述要明确、具体,避免歧义
2.示例(Example、few-shot)
这是In-Context Learning的关键。通过在Prompt中提供几个精选的示例,我们可以让模型快速理解任务的输入输出格式和要求。比如,在情感分类任务中,我们可以提供几个样本文本及其情感标签(正面/负面),让模型学会判断情感倾向。示例要典型、多样,覆盖任务的主要场景。
3.格式控制(Output Formatting):这是规范模型输出的利器。通过格式控制标记,我们可以让模型以特定的格式组织输出内容,如生成CSV格式的表格、Markdown格式的文档等。例如,在数据分析任务中,我们可以要求模型以表格形式输出统计结果,每一行对应一个指标,用逗号分隔。
4. 角色指定(Role):这是激发模型创造力的神奇钥匙。通过为模型赋予一个虚拟的身份,我们可以让它以特定的视角、风格生成内容。比如,我们可以让模型