RAG之优化策略

 RAG是一个系统工程,在整个流程中我们可以做诸多层面的优化,下面分条介绍:

Input Enhancement

对输入query的优化,又称作query改写,改写方式包括问题分解,查询扩展等。具体内容可以参考另一篇文章RAG之query改写优化_rag query改写-CSDN博客

Retriever Enhancement

 检索模块提供的内容质量越高,生成模块的效果越有保证。提升检索文章质量的以下几种方式。

    a) recursive Retrieve 对用户query进行合理切分,再分别进行检索。

    b) chunk optimaization 调整数据库/文档分块的大小,例如sentence-window retrieval这种检索到特定文本后,将该文本的窗口内其他文本也一同返回。

    c) finetune retriever 利用高质量的领域数据或者特定任务数据对embedding模型进一步微调。

    d) 嵌入适配器,这是一种功能强大但使用简单的技术,可以扩展嵌入式内容,使其更好地与用户的任务保持一致,利用用户对检索文档相关性的反馈来训练适配器。

适配器是全面微调预训练模型的一种轻量级替代方法。目前,适配器是以小型前馈神经网络的形式实现的,插入到预训练模型的层之间。训练适配器的根本目的是改变嵌入查询,从而为特定任务产生更好的检索结果。嵌入适配器是在嵌入阶段之后、检索之前插入的一个阶段。可以把它想象成一个矩阵(带有经过训练的权重),它采用原始嵌入并对其进行缩放。

    e) hybrid retrieve 同时利用稠密检索跟稀疏检索等多种检索方案

    f) re-ranking 利用额外的精排模型对召回结果做进一步排序。需要更多计算成本。例如使用交叉编码器重排序;交叉编码器是一种深度神经网络,它将两个输入序列作为一个输入进行处理。这样,模型就能直接比较和对比输入,以更综合、更细致的方式理解它们之间的关系。

    g) meta-data filtering 利用某些属性对数据做进一步过滤,相当于条件查询。

Generator Enhancement

生成模型的能力决定了整个RAG系统的上限。

    a) prompt engineering 懂得都懂,大模型对于prompt还是很敏感的,正确掌握大模型的使用方式可以得到足够惊艳的效果。

    b) decoding Tuning 在decoder阶段增加更多控制,调整解码参数以提升多样性,或者将输出词表限制到特定空间等等。

    c) finetune generator 对生成模型做进一步finetune使得生成模型更适配特定领域或者检索模块。

Result enhancement

    若生成模型的结果未能达到预期效果,还能对结果进一步修饰。这里文中提到的方法貌似不够全面,目前很火热的rethink或者refine都没有提及。

RAG pipeline enhancement

    a) adatpive retrieval 在检索模块前新增一个模块,根据用户query判断是否需要调用外部知识库,避免滥用检索造成的资源浪费跟模型幻视问题。

    b) iterative RAG 迭代RAG,反复调用检索-生成这个pipeline以获得更佳效果

  • 6
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值