叉乘 线性代数_线性代数的本质 8 叉积

本文通过3Blue1Brown的视觉化方式,解释了叉积的几何意义,展示了如何利用线性性和矩阵运算将其转化为点积表示,揭示了向量p与三向量构成的六面体体积的关系。关键概念包括对偶性、矩阵乘法和投影,最后导出叉积的计算公式和实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片及部分内容引用自:3blue1brown

呃,我们为什么要做这个?从哪来,为什么这样定义,也许你觉得很突兀,如果你愿意接受它,对于理解叉积来说会很方便。

一切始于这个函数,首先这个函数是线性的,所以我们可以用对偶性思想来思考这个问题。一旦知道他是线性,我们就可以用矩阵乘法来表示他:

而对偶性的思路,从多维空间到一维空间变换特别之处,就是我么可以把向量“立起来‘,并把他看作点积,像这样:

这个P就是我们想要找的向量,他与[x, y, z]向量的点积等于一个 3X3的行列式。

等号两边展开 :

左边:

p1⋅x+p2⋅y+p3⋅zp1⋅x+p2⋅y+p3⋅z

p 与 [x, y, z] 的点积为 [x, y ,z] 在 p向量方向的投影与p的长度相乘

右边 :                                                                                                                                             x(v2w3−v3w2)+y(v3w1−v1w3)+z(v1w2−v2w1)

为三向量围成的六面体的体积

即得到:

p1 = (v2w3−v3w2);

p2 = (v3w1−v1w3);

p3 = (v1w2−v2w1);

六面体的体积 为 底面积 X (第三个向量在垂直于 vm面方向上的投影),右面的结果也正是这个结果, v,m向量围成的面积 与 [x,y,z]在其垂直方向上相乘。这个与左边p 与 [x, y, z]的点积正是相对应的,即 正是我们要求的向量p。

v 与 w的叉积 正如上面图片,i,j,k知识用来标记,用向量的方式来解释这个结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值