图片及部分内容引用自:3blue1brown
呃,我们为什么要做这个?从哪来,为什么这样定义,也许你觉得很突兀,如果你愿意接受它,对于理解叉积来说会很方便。
一切始于这个函数,首先这个函数是线性的,所以我们可以用对偶性思想来思考这个问题。一旦知道他是线性,我们就可以用矩阵乘法来表示他:
而对偶性的思路,从多维空间到一维空间变换特别之处,就是我么可以把向量“立起来‘,并把他看作点积,像这样:
这个P就是我们想要找的向量,他与[x, y, z]向量的点积等于一个 3X3的行列式。
等号两边展开 :
左边:
p1⋅x+p2⋅y+p3⋅zp1⋅x+p2⋅y+p3⋅z
p 与 [x, y, z] 的点积为 [x, y ,z] 在 p向量方向的投影与p的长度相乘
右边 : x(v2w3−v3w2)+y(v3w1−v1w3)+z(v1w2−v2w1)
为三向量围成的六面体的体积
即得到:
p1 = (v2w3−v3w2);
p2 = (v3w1−v1w3);
p3 = (v1w2−v2w1);
六面体的体积 为 底面积 X (第三个向量在垂直于 vm面方向上的投影),右面的结果也正是这个结果, v,m向量围成的面积 与 [x,y,z]在其垂直方向上相乘。这个与左边p 与 [x, y, z]的点积正是相对应的,即 正是我们要求的向量p。
v 与 w的叉积 正如上面图片,i,j,k知识用来标记,用向量的方式来解释这个结果