Google Earth Engine——美国1950-2099年降水、气温含预测数据集(1km)分辨率

NASA的NEX-DCP30数据集提供了基于CMIP5和RCPs的美国本土气候情景,用于评估气候变化对精细尺度过程的影响。数据集涵盖1950年至2099年的月度预测,包括降水和气温的统计指标,旨在支持气候影响研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The NASA NEX-DCP30 dataset is comprised of downscaled climate scenarios for the conterminous United States that are derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5, see Taylor et al. 2012) and across the four greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs, see Meinshausen et al. 2011) developed for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). The purpose of these datasets is to provide a set of high resolution, bias-corrected climate change projections that can be used to evaluate climate change impacts on processes that are sensitive to finer-scale climate gradients and the effects of local topography on climate conditions.

The dataset contains monthly projections covering the periods from 1950 through 2005 (Retrospective Run) and from 2006 to 2099 (Prospective Run). It includes ensemble statistics calculated for each RCP from all model runs available for the pr, tasmin, and tasmax bands.

NEX-DCP30 was prepared by the Climate Analytics Group and NASA Ames Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation (NCCS).

NASA NEX-DCP30数据集由美国本土的降尺度气候情景组成,这些情景来自于在耦合模型相互比较项目第五阶段(CMIP5,见Taylor等人,2012年)下进行的一般循环模型(GCM)运行,以及为政府间气候变化专门委员会第五次评估报告(IPCC AR5)制定的四种温室气体排放情景,即代表浓度路径(RCPs,见Meinshausen等人,2011)。这些数据集的目的是提供一套高分辨率的、经过偏差校正的气候变化预测,可用于评估气候变化对那些对更精细的气候梯度和当地地形对气候条件影响敏感的过程的影响。

该数据集包含从1950年到2005年(回顾性运行)和从2006年到2099年(展望性运行)的每月预测。它包括来自33个模型的降尺度预测。并非每个情景都包含每个模型的预测。

NEX-DCP30由气候分析小组和NASA艾姆斯研究中心使用NASA地球交换系统编制,并由NASA气候模拟中心(NCCS)分发。

Dataset Availability

1950-01-01T00:00:00 - 2099-12-31T00:00:00

Dataset Provider

NASA / CSU

Collection Snippet

ee.ImageCollection("NASA/NEX-DCP30_ENSEMBLE_STATS")

Resolution

927.67 meters

Bands Table

NameDescriptionMin*Max*Units
pr_meanMonthly mean of the daily precipitation rate at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)00.0006kg/(m^2*s)
pr_quartile2525th quartile of the precipitation at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)00.0004kg/(m^2*s)
pr_medianMedian of precipitation at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)00.0006kg/(m^2*s)
pr_quartile7575th quartile of the precipitation at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)00.0008kg/(m^2*s)
tasmin_meanMonthly mean of the daily-minimum near-surface air temperature247.58311.09K
tasmin_quartile2525th quartile the daily-minimum near-surface air temperature243.28310.06K
tasmin_medianMedian of the daily-minimum near-surface air temperature246.87311.12K
tasmin_quartile7575th quartile of the daily-minimum near-surface air temperature248.42312.59K
tasmax_meanMonthly mean of the daily-maximum near-surface air temperature258.47326.48K
tasmax_quartile2525th quartile of the daily-maximum near-surface air temperature256.13325.52K
tasmax_medianMedian of the daily-maximum near-surface air temperature257.89326.28K
tasmax_quartile7575th quartile of the daily-maximum near-surface air temperature260.2328.2K

* = Values are estimated

影像属性:

NameTypeDescription
scenarioStringName of the CMIP5 scenario. It is one of: 'historical', 'rcp26', 'rcp45', 'rcp60', 'rcp85', where 'historical' designates retrospective model runs (pre-2006).
monthDoubleCalendar month

引用:

Thrasher, B., J. Xiong, W. Wang, F. Melton, A. Michaelis and R. Nemani (2013), Downscaled Climate Projections Suitable for Resource Management, Eos Trans. AGU, 94(37), 321. doi:10.1002/2013EO370002

代码:

var dataset = ee.ImageCollection('NASA/NEX-DCP30_ENSEMBLE_STATS')
                  .filter(ee.Filter.date('2018-07-01', '2018-07-30'));
var monthlyMeanMinimumAirTemperature = dataset.select('tasmin_mean');
var monthlyMeanMinimumAirTemperatureVis = {
  min: 247.0,
  max: 311.0,
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'],
};
Map.setCenter(-115.356, 38.686, 5);
Map.addLayer(
    monthlyMeanMinimumAirTemperature, monthlyMeanMinimumAirTemperatureVis,
    'Monthly Mean Minimum Air Temperature');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值