
中科星图
文章平均质量分 88
此星光明
博士,地图制图和地理信息工程专业,主要涉及Google Earth Engine、PIE-Engine、Planetary Computer、AI Earth、中科星图等云平台的遥感生态云计算研究(多源遥感和机器学习相结合),适用建筑、气象、农业、水利等各个专业云计算。2022年云计算领域博客之星TOP3,2023年CSDN博客之星TOP13,华为云云享专家、MVP,阿里云社区、51CTO博客专家博主。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Landsat5_C2_SR数据集2007-2011年
Landsat5_C2_SR数据集是经大气校正后的地表反射率数据,属于Collection2的二级数据产品,空间分辨率为30米,基于Landsat生态系统扰动自适应处理系统(LEDAPS)(版本3.4.0)生成。水汽、臭氧、大气高度、气溶胶光学厚度、数字高程与Landsat数据一起输入到太阳光谱(6S)辐射传输模型中对卫星信号进行二次模拟,生成大气顶部(TOA)反射率、表面反射率、TOA亮度温度和云、云影、陆地、水体的掩膜。这个数据集对于地球科学研究、资源管理、环境监测、农业等领域具有极大的应用价值。原创 2023-12-02 04:49:37 · 776 阅读 · 0 评论 -
中科星图(GVE)——过火面积识别(dNBR)和CART方法进行火灾识别
过火面积识别(dNBR)和CART方法是一种常用的火灾识别技术。下面分别介绍这两种方法的基本原理和应用。过火面积识别(dNBR): 过火面积识别(dNBR)是一种基于遥感数据的火灾识别方法。该方法计算了火灾前后的归一化差异植被指数(dNBR),通过对比这两个指数的差异,可以确定火灾过火面积。dNBR的计算公式如下:其中,NBRpre表示火灾前的归一化植被指数,NBRpost表示火灾后的归一化植被指数。通过计算dNBR,可以得到火灾过火面积的烧伤程度。原创 2024-10-19 06:30:00 · 1003 阅读 · 0 评论 -
中科星图(GVE)——使用随机森林方法进行土地分类
使用随机森林方法进行土地分类的步骤如下:数据准备:收集所需的土地分类数据,并对数据进行预处理,包括缺失值处理、数据标准化等。特征选择:根据土地特征的重要性选择合适的特征,可以使用特征选择算法如信息增益、方差选择等。数据集划分:将数据集划分为训练集和测试集,通常采用70%的数据作为训练集、30%的数据作为测试集。随机森林建模:使用训练集数据建立随机森林模型。随机森林是由多个决策树组成的集成学习模型,每个决策树通过对一部分有放回的样本进行训练而构建。原创 2024-10-18 18:00:00 · 824 阅读 · 0 评论 -
中科星图GVE——使用CART方法进行土地分类
CART(Classification and Regression Trees)是一种常用的决策树分类方法,可以用于土地分类。下面是使用CART方法进行土地分类的步骤:1. 数据准备:收集一定数量的土地样本数据,并对其进行标记。每个样本应包含一组土地特征(如土壤类型、植被覆盖、坡度等)以及其对应的分类标签(如农田、林地、草地等)。2. 特征选择:根据土地特征的重要性,选择一个特征作为根节点。常用的特征选择方法包括信息增益、基尼指数等。原创 2024-10-17 09:00:00 · 2152 阅读 · 0 评论 -
中科星图GVE案例——利用最短距离方法实现土地分类(合肥)
最短距离方法可以用来对土地进行分类。首先,需要收集土地数据,包括土地的位置和相关特征。然后,选择一些已知分类的土地样本作为训练样本。接下来,对于每个未知分类的土地样本,计算它与训练样本之间的距离。可以使用欧氏距离或曼哈顿距离等度量方法计算距离。然后,将未知分类的土地样本分配到与其最近的训练样本所属的分类中。最后,根据分配结果可以得到土地的分类。需要注意的是,最短距离方法对异常值较为敏感,因此在使用时需要注意数据的准确性和可靠性。原创 2024-10-17 04:30:00 · 817 阅读 · 0 评论 -
中科星图GVE(AI案例)——ai采样区域内的林地提取
要提取AI采样区域内的林地,可以使用遥感影像和图像处理技术来完成。以下是一种可能的方法:获取高分辨率遥感影像:使用卫星或无人机获取高分辨率的遥感影像,确保影像能够清晰地显示采样区域内的地表特征。影像预处理:对获取的遥感影像进行预处理,包括辐射校正、大气校正和几何校正等。这些处理步骤可以提高影像的质量,并消除遥感数据中的一些噪声和偏差。影像分割:将预处理后的遥感影像进行分割,将图像分成具有相似特征的区域。这可以通过一些图像分割算法来完成,如基于区域的分割算法或基于像素的分割算法。原创 2024-10-12 17:00:00 · 404 阅读 · 0 评论 -
中科星图GVE(AI案例)——AI采样区域的风机检测和识别
AI技术可以应用于风机检测和识别的任务中,以实现自动化和智能化的风机监控。以下是AI采样区域的风机检测和识别的一般步骤:数据采集:收集风机的各种图像或视频数据,可以包括正常运行状态下的风机图像、故障状态下的风机图像等。数据预处理:对采集到的数据进行预处理,包括图像的去噪、图像增强、图像标注等。特征提取:使用前沿的计算机视觉算法,例如卷积神经网络(CNN),对图像数据进行特征提取。通过训练,CNN可以学习到风机的视觉特征,例如风机叶片的形状、风机轴的位置等。原创 2024-10-13 16:00:00 · 619 阅读 · 0 评论 -
中科星图GVE(AI案例)——AI提取采样区域的水体区域
要提取采样区域的水体区域,可以使用计算机视觉技术和图像处理算法来实现。下面是一个可能的解决方案:预处理图像:首先,对采样区域的图像进行预处理。这包括消除图像中的噪声、增强对比度以及进行图像的平滑处理。水体识别:使用图像分割算法来识别图像中的水体区域。可以选择基于颜色、纹理或形状的分割算法来实现这一步骤。常用的算法包括阈值分割、边缘检测和区域生长等。水体区域提取:根据水体识别的结果,提取出水体区域。可以使用二值化技术将识别到的水体区域提取出来。原创 2024-10-15 18:30:00 · 536 阅读 · 0 评论 -
中科星图GVE(案例)——AI实现光伏面板提取
光伏面板提取是一种将光伏面板从图像或视频中准确地分割出来的任务,可以通过使用深度学习算法来实现。以下是一种基于深度学习的光伏面板提取的实现步骤:1. 数据准备:收集足够的包含光伏面板的图像或视频数据集,并手动标注光伏面板的位置信息。2. 数据预处理:对数据进行预处理,包括图像大小调整、色彩空间转换、数据增强等,以提高算法的鲁棒性和泛化能力。3. 构建模型:选择合适的深度学习模型,如基于卷积神经网络(CNN)的模型,作为光伏面板提取的模型。原创 2024-10-16 05:45:00 · 924 阅读 · 0 评论 -
中科星图GVE(案例)——AI实现道路提取分析
AI实现道路提取分析是指利用人工智能技术,通过对图像或地理数据的处理和分析,自动识别和提取道路信息。实现道路提取分析的关键步骤包括:1. 数据准备:收集或获取包含道路信息的图像或地理数据。2. 数据预处理:对数据进行预处理,如图像去噪、图像增强、地理数据格式转换等。3. 特征提取:利用机器学习技术,提取图像或地理数据中与道路相关的特征。4. 道路识别:使用机器学习算法对数据进行分类和判别,识别出道路对象。5. 道路提取:根据道路对象的位置和形状信息,将其从原始数据中提取出来。原创 2024-10-14 17:00:00 · 794 阅读 · 0 评论 -
中科星图GVE(案例)——AI实现地块提取
AI可以通过图像处理和机器学习算法实现地块提取。首先,AI可以对高分辨率遥感图像进行预处理,包括图像校正和去噪等处理。然后,AI可以使用图像分割算法,如卷积神经网络(CNN)或区域生长算法,来将图像分割成不同的区域。接下来,AI可以根据区域的特征,如颜色、纹理和形状等,将相邻的区域合并成地块。最后,AI可以使用基于规则的方法,如阈值或形态学操作,来进一步筛选和优化提取的地块。通过这些步骤,AI可以实现地块的自动提取。原创 2024-10-11 20:00:00 · 489 阅读 · 0 评论 -
中科星图GVE(案例)——AI实现光伏选址
光伏选址是一项复杂而重要的任务,需要考虑多个因素,包括地形地貌、气候条件、土地利用情况、附近电网的容量和可靠性等。人工智能可以帮助优化光伏选址过程,以下是一些AI算法和技术可以应用于光伏选址:数据分析和模型预测:使用机器学习算法对大量的历史气象数据和土地利用数据进行分析,建立气候条件和土地适宜度的预测模型。这些模型可以预测未来一段时间内的太阳辐射量、气温、湿度等参数,并根据这些参数评估不同地点的光伏发电潜力。原创 2024-10-14 19:00:00 · 576 阅读 · 0 评论 -
中科星图GVE(案例)——AI检测采样区域的滑坡
AI可以通过分析卫星图像或航拍图像来检测采样区域的滑坡。以下是一些可能的方法:图像识别: AI算法可以训练,以识别滑坡的视觉特征,如裸露的土地、土壤裂缝、岩石碎片等。通过对图像中的这些特征进行分析,算法可以识别出滑坡区域。地形分析: AI可以通过分析地形数据来检测滑坡区域。地形数据可以是数字高程模型(DEM)或地形图。算法可以检测出地形的不规则性、陡峭程度和地形变化等,从而确定潜在的滑坡区域。时间序列分析: AI可以利用多期卫星图像或航拍图像来进行时间序列分析,以检测采样区域的滑坡。原创 2024-10-10 17:29:26 · 640 阅读 · 0 评论 -
中科星图GVE(案例)——AI提取采样区域的大棚
要提取大棚的采样区域,可以通过图像处理技术进行。以下是一种可能的步骤:加载图像:使用图像处理库加载待处理的图像。图像预处理:对图像进行预处理操作,例如调整亮度、对比度、色彩平衡等,确保图像质量良好。特征检测:使用图像处理算法,如边缘检测、角点检测等,来检测图像中的大棚边界。区域提取:基于检测到的大棚边界,使用图像分割算法,如阈值分割、区域增长等,将大棚从图像中分割出来。优化和后处理:根据具体需求,对提取的大棚区域进行优化和后处理操作,如去除噪声、填充空洞等。原创 2024-10-10 17:07:30 · 533 阅读 · 0 评论 -
中科星图GVE(案例)——AI实现森林面积提取(含问题修复)
要实现森林面积的提取,可以借助遥感技术和机器学习算法。以下是一种可能的方法:数据准备:收集有关森林的遥感影像数据。这些数据可以来自卫星观测、无人机或其他可获取高分辨率影像的源。确保数据集包括有标记的森林区域和非森林区域。数据预处理:对收集到的遥感影像数据进行预处理。可能的预处理操作包括图像去噪、图像增强和影像配准。特征提取:从预处理的遥感影像数据中提取特征。常用的特征包括颜色直方图、纹理特征和形状特征。这些特征可以通过计算统计量、应用滤波器或使用深度学习模型来提取。原创 2024-10-10 17:00:51 · 884 阅读 · 0 评论 -
中科星图GVE(案例)——AI实现建筑用地变化前后对比情况
AI可以通过分析卫星图像、航拍影像或其他地理信息数据,实现建筑用地变化前后对比。以下是一种可能的实现方法:数据获取:从卫星图像提供商、航拍影像提供商或地理信息数据提供商获取相关数据。这些数据应包括建筑用地的变化前后的图像或影像数据。数据预处理:对获取的数据进行预处理,包括图像或影像的校正、去噪、裁剪等操作,以确保数据质量和一致性。特征提取:使用计算机视觉技术和图像处理算法,提取建筑用地图像或影像中的特征。这些特征可以包括颜色、纹理、形状、大小等。原创 2024-10-12 20:00:00 · 438 阅读 · 0 评论 -
中科星图GVE(案例)——AI采样区域的过火区域的自动提取
自动提取AI采样区域的过火区域是一个复杂的问题,需要利用图像处理和机器学习算法来实现。下面是一个基本的方法来自动提取AI采样区域的过火区域:图像预处理:首先,对采样区域的图像进行预处理。可以使用图像增强技术,例如直方图均衡化或对比度增强,以提高图像的质量和可视化效果。特征提取:使用计算机视觉算法,例如边缘检测、纹理特征提取或颜色特征提取,来提取图像中的特征。这些特征可以用来区分过火区域和非过火区域。分割和分类:利用图像分割算法,例如阈值分割、区域生长或基于图的分割,将图像分割成多个区域。原创 2024-10-10 16:36:50 · 442 阅读 · 0 评论 -
中科星图GVE(案例)——AI提取指定采样区域的建筑物范围
要提取指定采样区域的建筑物范围,可以使用遥感图像处理和计算机视觉技术。以下是一种可能的方法:获取高分辨率遥感图像:从卫星或其他航拍平台获取高分辨率的遥感图像,确保图像清晰且覆盖了感兴趣的区域。图像预处理:对遥感图像进行预处理,包括去噪、增强对比度等操作,以提高后续处理的准确性。目标检测:使用目标检测算法,如基于深度学习的目标检测算法(如YOLO、SSD等)或传统的物体检测算法,识别图像中的建筑物目标。目标定位:对于检测到的建筑物目标,使用边缘检测、轮廓提取等技术,确定建筑物的准确边界。原创 2024-10-10 16:07:42 · 1121 阅读 · 0 评论 -
中科星图(案例)——如何在云平台计算坡度、坡向和山阴
在云平台上计算坡度、坡向和山阴是一个涉及到地理信息系统(GIS)技术的任务。在本文中,我们将介绍如何使用云平台上的GIS工具来实现这些计算。首先,我们需要了解一些基本概念。坡度是指地表在水平方向上的改变率,可以通过计算地表高程的变化来得到。坡向是指地表的朝向,可以用方位角表示。山阴是指地表上的阴影,可以通过计算太阳光照的角度和地形高程来得到。一般来说,计算坡度、坡向和山阴需要以下步骤:1. 数据获取:首先,我们需要获取用于计算的地理数据。这可以包括高程数据、地形数据和太阳光照数据。原创 2024-02-22 09:00:00 · 1048 阅读 · 0 评论 -
中科星图(案例)——基于Landsat8SR影像反演太湖遥感水色FUI指数
本文主要是利用gve云平台实现Landsat8 影像进行太湖FUI水色反演。基于Landsat 8 SR影像反演太湖遥感水色FUI指数的集体操作流程主要包括以下几个步骤:1. 数据获取与预处理:首先,需要从美国地质调查局(USGS)或其他可靠的数据源获取Landsat 8 SR影像数据。在太湖周边选择合适的日期的遥感影像,以确保太湖区域的相关信息完整。获取到影像数据后,需要进行预处理,如辐射定标、大气校正、几何校正等。原创 2024-02-21 09:45:00 · 1889 阅读 · 0 评论 -
中科星图——Landsat9_C2_SR经大气校正后的地表反射率数据
Landsat9_C2_SR数据集是经大气校正后的地表反射率数据,属于Collection2的二级数据产品,空间分辨率为30米,基于Landsat生态系统扰动自适应处理系统(LEDAPS)(版本3.4.0)生成。水汽、臭氧、大气高度、气溶胶光学厚度、数字高程与Landsat数据一起输入到太阳光谱(6S)辐射传输模型中对卫星信号进行二次模拟,以生成大气顶部(TOA)反射率、表面反射率、TOA亮度温度和云、云影、陆地、水体的掩膜。原创 2024-02-21 08:30:00 · 2335 阅读 · 0 评论 -
中科星图——影像卷积核函数Kernel之gaussian高斯核函数核算子、Laplacian4核算子和square核算子等的分析
高斯核函数是图像处理中常用的一种卷积核函数。它是一种线性滤波器,可以实现图像的平滑处理。在图像处理中,高斯核函数的卷积操作可以用于去噪、平滑和模糊等任务。高斯核函数的定义可以表示为一个二维高斯分布函数,表达式如下:其中,x和y表示图像中的像素位置,sigma表示高斯分布的标准差。高斯核函数的数学表达式可以通过一维高斯函数的乘积得到。高斯核函数在图像处理中的应用非常广泛。它主要有以下几个优点:1. 平滑处理:高斯核函数可以对图像进行平滑处理,即通过减小图像中像素之间的差异来模糊图像。原创 2024-02-20 11:00:00 · 1552 阅读 · 0 评论 -
中科星图(案例)——NDVI植被指数的计算和图例添加以及median和mosaic的影像拼接
在GVE云平台上实现NDVI(Normalized Difference Vegetation Index)植被指数的计算和图例添加,可以通过以下步骤进行:1. 数据获取和准备首先,需要获取卫星影像数据,可以选择公开的遥感数据源,如Landsat、MODIS等。数据获取后,需要对数据进行预处理,包括数据格式转换、投影变换等,以确保数据的一致性和可用性。2. NDVI计算NDVI是通过计算红外波段和可见光波段的反射率之间的差异来评估植被覆盖度的指数。原创 2024-02-20 10:30:00 · 2512 阅读 · 0 评论 -
中科星图——影像的裁剪和影像多波段进行合成
影像的裁剪是指将原始影像中所感兴趣的区域切割出来,去除其他无用的区域。裁剪可以用来提取特定区域的信息,缩小研究范围,降低数据处理的复杂度。影像的裁剪涉及到以下几个方面的内容:1. 裁剪范围确定:首先需要确定裁剪的范围,可以通过手动选择指定区域,在原始影像上绘制感兴趣的区域,或者利用图像处理算法自动检测区域。2. 裁剪方式选择:根据不同的需求,可以选择不同的裁剪方式。常见的裁剪方式包括:矩形裁剪、多边形裁剪、圆形裁剪等。根据具体情况选择最适合的裁剪方式。原创 2024-02-19 10:00:00 · 1030 阅读 · 0 评论 -
中科星图GVE——Landsat9_C2_RAW_T1数据集(经过缩放和校准的辐射亮度产品)
Landsat9_C2_RAW数据集是经过缩放和校准的辐射亮度产品,按照数据质量划分为T1和T2。数据质量最好的影像归为T1,主要存在于L1TP处理等级中,这些数据做过很好的几何校正和辐射定标,适合于多时相数据分析。处理中没有达到 T1标准的影像被归为T2,T2和T1的辐射标准相同,由于缺少轨道信息,大范围云层覆盖等因素导致可选择的地面控制点不够,没有达到T1的几何精度标准,主要包括 L1GT和L1GS处理等级数据。原创 2024-02-20 09:00:00 · 1140 阅读 · 0 评论 -
中科星图——Landsat8_C2_ST数据集是经大气校正的地表温度数据
Landsat8_C2_ST数据集是经大气校正的地表温度数据,属于Collection2的二级数据产品,以开尔文为单位测量地球表面温度,是全球能量平衡研究和水文模拟中的重要地球物理参数。地表温度数据还有助于监测作物和植被健康状况,以及极端高温事件,如自然灾害(如火山爆发、野火)和城市热岛效应。Landsat 8是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合运营的陆地卫星,它提供了高分辨率的地球观测数据。原创 2024-02-19 09:00:00 · 1789 阅读 · 0 评论 -
中科星图GVE(案例)——如何利用gve云平台进行重投影resample?nearest|bilinear|cubic|cubic_spline|lanczos|average
重投影(Reprojection)是将地理数据从一个投影坐标系转换到另一个投影坐标系的过程。地理数据通常以经纬度(地理坐标系)的形式保存,但在实际应用中,常常需要将数据转换为其他投影坐标系,以适应不同的应用需求。重投影可以保持数据的空间特征和几何形状,但会改变数据的投影坐标和分辨率。原创 2024-02-15 15:00:00 · 1668 阅读 · 0 评论 -
中科星图GVE(案例)——对影像数据进行重投影计算
本教程主要的目的是在中科星图gve云平台实现遥感影像的重投影计算,我们这里将EPSG:32650坐标系转化为epsg:3578进行重投影。云平台是一种基于云计算技术的资源共享和服务提供平台,通过云平台,用户可以将计算、存储、网络等资源放在云上进行管理和利用。在云平台上进行重投影计算,可以方便地利用云计算资源来处理大规模的数据,提高计算效率和灵活性。重投影是指将地理坐标系的图像或数据转换为平面坐标系的过程。原创 2024-02-18 15:00:00 · 967 阅读 · 0 评论 -
中科星图GVE(案例)——云计算平台中如何利用expression进行波段运算(以NDVI为例)
本文我们利用gve平台实现波段运算实现NDVI的计算,这里也就是如何将我们公式传递给云平台,一般是通过expression表达式来实现NDVI或者其它指数的计算。云计算平台中利用expression进行波段运算是一种数字图像处理技术,用于从多个波段的图像数据中提取有用的信息。这种技术可以应用在各种领域,如遥感、医学图像、天气预报等。在云计算平台上使用expression进行波段运算,通常需要以下几个步骤:1. 数据准备:将波段图像数据上传到云计算平台,并将其转化为合适的数据格式。原创 2024-02-17 15:00:00 · 814 阅读 · 0 评论 -
Landsat8_C2_SR数据集是经大气校正后的地表反射率数据
Landsat8_C2_SR数据集是经大气校正后的地表反射率数据,属于Collection2的二级数据产品,空间分辨率为30米,基于Landsat生态系统扰动自适应处理系统(LEDAPS)(版本3.4.0)生成。水汽、臭氧、大气高度、气溶胶光学厚度、数字高程与Landsat数据一起输入到太阳光谱(6S)辐射传输模型中对卫星信号进行二次模拟,以生成大气顶部(TOA)反射率、表面反射率、TOA亮度温度和云、云影、陆地、水体的掩膜。前言 – 人工智能教程。原创 2024-02-18 08:00:00 · 2354 阅读 · 1 评论 -
中科星图——LANDSAT_8/02/T1/TOA的Landsat8_C2_TOA类数据集
Landsat8_C2_TOA数据集是将数据每个波段的辐射亮度值转换为大气层顶表观反射率TOA,是飞行在大气层之外的航天传感器量测的反射率,包括了云层、气溶胶和气体的贡献,可通过辐射亮度定标参数、太阳辐照度、太阳高度角和成像时间等几个参数计算得到。为了便于在线分析存储,平台将影像像素值扩大了10000倍。Landsat-8卫星包含OLI陆地成像仪(Operational Land Imager)和TIRS热红外传感器(Thermal Infrared Sensor)两种传感器,每16天可以实现一次全球覆盖。原创 2024-02-17 09:00:00 · 1295 阅读 · 0 评论 -
中科星图GVE(案例)——如何通过影像进行等高线的绘制
等高线是地理学中常用的一种表示地形高度的手段。它可以通过连续的等高线来描绘出地形的特征和变化。在绘制等高线时,我们需要关注地形的海拔高度以及地势的起伏,根据这些数据来确定等高线的间隔和密度。首先,我们需要准备一些地形数据,这些数据可以来自于地形测量仪器、数字高程模型或者卫星图像。这些数据应包含地点的经纬度坐标和相应的海拔高度。其次,我们需要决定等高线的间隔。间隔通常根据地形的起伏程度来确定。如果地形起伏较大,我们可以选择较小的间隔,以描绘出更详细的地形特征;原创 2024-02-12 15:30:00 · 954 阅读 · 0 评论 -
中科星图GVE——矢量之间的交集,并集和差集等关系
矢量是数学中的一个重要概念,它可以分为有序矢量和无序矢量。在数学中,我们经常需要对矢量之间的关系进行分析,包括求交集、并集和差集等运算。下面将对这些概念进行具体解释。1. 交集:矢量的交集是指两个矢量中共同存在的元素所构成的集合。假设有两个矢量A和B,它们分别包含了一些元素,我们需要找出这两个矢量中共有的元素。例如,A={1, 2, 3, 4}、B={3, 4, 5, 6},那么A与B的交集为{3, 4}。交集的概念可以推广到多个矢量的情况,即求多个矢量的共同部分。原创 2024-02-16 17:30:00 · 1868 阅读 · 0 评论 -
中科星图——LANDSAT_8/02/T1/RAW的Landsat8_C2_RAW类数据集
Landsat8_C2_RAW数据集是经过缩放和校准的辐射亮度产品,按照数据质量划分为T1和T2。数据质量最好的影像归为T1,主要存在于L1TP处理等级中,这些数据做过很好的几何校正和辐射定标,适合于多时相数据分析。处理中没有达到 T1标准的影像被归为T2,T2和T1的辐射标准相同,由于缺少轨道信息,大范围云层覆盖等因素导致可选择的地面控制点不够,没有达到T1的几何精度标准,主要包括 L1GT和L1GS处理等级数据。原创 2024-02-16 08:30:00 · 1930 阅读 · 0 评论 -
中科星图GVE(AI案例)——如何利用ai技术进行船只的识别和提取分析(珠江三角洲)
随着人工智能(AI)技术的快速发展,船只的识别和分析变得越来越容易。AI技术可以利用计算机视觉和深度学习算法来自动识别和提取船只的特征,从而进行进一步的分析。下面将介绍如何利用GVE云计算平台的AI技术进行船只的识别和提取分析。1. 数据收集与准备:首先,需要收集大量的船只图像数据作为训练样本。这些数据可以通过网络爬虫来自公开的船只图片数据库,也可以依靠专业的船只监控摄像头来获取。在收集数据的过程中,要注意获取各种不同类型和规模的船只图像,以确保模型的泛化能力。原创 2024-02-09 15:04:52 · 1259 阅读 · 0 评论 -
中科星图GVE(AI案例)——AI影像进行超分案例
超分辨率图像处理是一种通过增加图像的空间分辨率来提高图像质量的技术。传统的超分辨率算法主要基于插值和滤波方法,然而这些方法往往无法准确恢复丢失的高频细节,导致图像出现模糊或失真。近年来,基于人工智能的超分辨率算法得到了广泛的关注和研究。下面将介绍AI影像进行超分的具体细节。AI影像超分辨率是一种基于深度学习的超分辨率算法,其核心是通过训练一个深度学习模型来实现图像的超分辨率重建。与传统的算法不同,AI超分辨率算法能够更好地捕捉图像的细节和纹理,并生成更加真实、清晰的超分辨率图像。原创 2024-02-15 13:30:00 · 1129 阅读 · 0 评论 -
中科星图GVE(AI案例)——如何利用高分辨率0.5m影像进行建筑物提取
高分辨率0.5m影像提供了详细的地表信息,特别适用于建筑物的提取。以下是一些利用高分辨率影像进行建筑物提取的方法:预处理:在进行建筑物提取之前,需要对影像进行一些预处理。首先,根据影像质量,可以进行边缘增强、噪声去除等处理。其次,可以进行影像配准,将不同时间段的影像进行配准,以获取更精确的建筑物边界。影像分割:采用图像分割技术,将影像分成不同的区域,以便在每个区域中提取建筑物。常用的图像分割方法包括阈值分割、区域增长、边界检测等。特征提取:根据建筑物的特点,可以提取不同的特征来识别建筑物。原创 2024-02-15 11:30:00 · 1527 阅读 · 0 评论 -
中科星图GVE(AI案例)——如何利用高分辨率0.5m影像进行建筑桥梁提取
如何利用高分辨率0.5m影像进行建筑桥梁提取至少800米长度的桥梁?1. 数据获取:首先,需要获取高分辨率0.5m影像数据。可以通过购买商业卫星数据、使用无人机拍摄影像或从地理信息系统(GIS)平台获取相关数据。确保获取到的影像具有高空间分辨率,能够清晰显示建筑物和桥梁细节。2. 影像预处理:在进行桥梁提取之前,需要对影像进行预处理,以优化提取过程。预处理步骤包括影像校正(如去除地面变形、影像配准等)、去噪(如滤波、降低影像噪声等)和增强(如对比度增强、直方图均衡化等)。原创 2024-02-15 08:30:00 · 1824 阅读 · 0 评论 -
中科星图GVE(AI案例)——s(AI_Water_Extraction)案例
此处是利用中科星图GVE的AI算法进行指定区域的水体提取,其实这个版本就相当于我们利用代码区实现这个过程,有点类似于该平台中的水体提取的产品解决方案。要利用Landsat影像进行水体提取,通常可以按照以下步骤进行:1. **数据获取**:首先需要获取Landsat影像数据,可以从USGS的地球资源观测系统(Earth Explorer)等平台下载所需的Landsat影像数据。2. **预处理**:对获取的Landsat影像数据进行预处理,包括大气校正、辐射定标、影像配准等步骤,以确保数据质量。原创 2024-02-15 10:30:00 · 887 阅读 · 0 评论 -
中科星图GVE(AI案例)——提取采样区域的黑臭水体案例
简单的流程就是从gve中获取数据,然后进行去云然后就是利用平台算法进行黑色水域提取。利用Landsat进行水体提取是一种常用的遥感应用技术,主要用于获取水体的空间分布信息和动态变化情况。下面是利用Landsat进行水体提取的主要流程和详细操作步骤:1. 数据获取首先需要从USGS(美国地质调查局)或其他数据提供机构获取Landsat卫星遥感数据。Landsat数据包括多光谱图像和热红外图像,常用的有Landsat 5、Landsat 7和Landsat 8。2. 数据预处理。原创 2024-02-14 09:00:00 · 2390 阅读 · 0 评论